

4

4502 Group User's Manual

RENESAS 4-BIT CISC SINGLE-CHIP MICROCOMPUTER
4500 SERIES

4500 SERIES

Before using this material, please visit our website to confirm that this is the most current document available.

Rev. 2.01

Revision date: Feb 02, 2005

Renesas Technology www.renesas.com

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/ or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

REVISION HISTORY

4502 Group User's Manual

Rev.	Date	Description		
		Page	Summary	
1.00	Oct 09, 2002	_	First edition issued	
	Aug 27, 2004	All pages 1-4 1-5 1-24 1-26 1-30 1-31 1-32 1-41 1-50 1-51 2-43 3-8 3-30 3-35	Words standardized: On-chip oscillator, A/D converter "Ta=25°C" added. Description of RESET pin revised. Fig.20: Some description added. Fig.22: Note 5 added. Some description revised. Fig.25: "DI" instruction added. Table 11: Revised. Table 15: Port level revised, Note 6 added. Fig.49: Some description added. Note on Power Source Voltage added. Table 2.7.1: Port level revised, Note 6 added. Some description added. Fig.3.3.3: Some description revised. Note on Power Source Voltage added.	
2.01	Feb 02, 2005	1-2 1-4 1-29 1-49 1-104 1-105 2-33 3-31 3-42	Package name revised. Package name revised. Timer 1 and timer 2 count start timing and count time when operation starts added. Timer 1 and timer 2 count start timing and count time when operation starts added. Package name revised. Package name revised. (6) Timer 1 and timer 2 count start timing and count time when operation starts added. (6) Timer 1 and timer 2 count start timing and count time when operation starts added. Package outline revised.	

BEFORE USING THIS USER'S MANUAL

This user's manual consists of the following three chapters. Refer to the chapter appropriate to your conditions, such as hardware design or software development.

1. Organization

• CHAPTER 1 HARDWARE

This chapter describes features of the microcomputer and operation of each peripheral function.

CHAPTER 2 APPLICATION

This chapter describes usage and application examples of peripheral functions, based mainly on setting examples of related registers.

CHAPTER 3 APPENDIX

This chapter includes necessary information for systems development using the microcomputer, such as the electrical characteristics, the list of registers.

As for the Mask ROM confirmation form, the ROM programming confirmation form, and the Mark specification form which are to be submitted when ordering, refer to the "Renesas Technology Corp." Hompage (http://www.renesas.com/en/rom).

As for the Development tools and related documents, refer to the Software and Tools (http://www.renesas.com/en/tools) of "Renesas Technology Corp." Homepage.

Table of contents

TED 4 HADDWADE

CHAPIER I HARDWARE	
DESCRIPTION	
FEATURES	1-2
APPLICATION	
PIN CONFIGURATION	
BLOCK DIAGRAM	1-3
PERFORMANCE OVERVIEW	
PIN DESCRIPTION	_
MILL TIPLINICTION	4.5

BUILT-IN PROM VERSION1-104

CHAPTER 2 APPLICATION

2.1 I/O pins	2-2
2.1.1 I/O ports	2-2
2.1.2 Related registers	2-6
2.1.3 Port application examples	2-10
2.1.4 Notes on use	2-11
2.2 Interrupts	2-13
2.2.1 Interrupt functions	2-13
2.2.2 Related registers	2-14
2.2.3 Interrupt application examples	2-17
2.2.4 Notes on use	2-21
2.3 Timers	2-22
2.3.1 Timer functions	2-22
2.3.2 Related registers	2-23
2.3.3 Timer application examples	
2.3.4 Notes on use	
2.4 A/D converter	
2.4.1 Related registers	2-35
2.4.2 A/D converter application examples	
2.4.3 Notes on use	
2.5 Reset	
2.5.1 Reset circuit	
2.5.2 Internal state at reset	
2.5.3 Notes on use	
2.6 Voltage drop detection circuit	
2.7 RAM back-up	
2.7.1 RAM back-up mode	
2.7.2 Related registers	
2.7.3 Notes on use	
2.8 Oscillation circuit	
2.8.1 Oscillation circuit	
2.8.2 Oscillation operation	
2.8.3 Notes on use	2-53

CHAPTER 3 APPENDIX ■

3.1 Electrical characteristics	3-2
3.1.1 Absolute maximum ratings	3-2
3.1.2 Recommended operating conditions	3-3
3.1.3 Electrical characteristics	
3.1.4 A/D converter recommended operating conditions	3-6
3.1.5 Voltage drop detection circuit characteristics	3-7
3.1.6 Basic timing diagram	3-7
3.2 Typical characteristics	3-8
3.2.1 VdD-ldd characteristics	3-8
3.2.2 Frequency characteristics	3-12
3.2.3 Vol-lol characteristics (VDD = 5 V)	3-14
3.2.4 Input threshold (VIH-VIL) characteristics (Ta = 25 °C)	3-17
3.2.5 V _{DD} -R _{PU} characteristics (Ports P0-P2, D ₂ /C, D ₃ /K, RESET)	3-20
3.2.6 Analog input current characteristics pins Vain-lain	3-21
3.2.7 A/D converter operation current (VDD-AIDD) characteristics (Ta = 25 °C)	3-23
3.2.8 Voltage drop detection circuit characteristics	3-23
3.2.9 A/D converter typical characteristics	3-25
3.3 List of precautions	3-27
3.3.1 Program counter	3-27
3.3.2 Stack registers (SKs) and stack pointer (SP)	3-27
3.3.3 Notes on I/O port	3-27
3.3.4 Notes on interrupt	3-29
3.3.5 Notes on timer	3-31
3.3.6 Notes on A/D conversion	3-32
3.3.7 Notes on reset	3-33
3.3.8 Notes on RAM back-up	3-34
3.3.9 Notes on oscillation control	3-35
3.3.10 Electric Characteristic Differences Between Mask ROM and One Time PROM Version MCU	3-35
3.3.11 Notes on Power Source Voltage	3-35
3.4 Notes on noise	3-36
3.4.1 Shortest wiring length	3-36
3.4.2 Connection of bypass capacitor across Vss line and VDD line	3-38
3.4.3 wiring to analog input pins	3-39
3.4.4 Oscillator concerns	3-39
3.4.5 setup for I/O ports	3-40
3.4.6 providing of watchdog timer function by software	3-40
3.5 Package outline	3-42

List of figures

CHAPTER 1 HARDWARE ■

Pin configuration (top view) (4502 Group)	1-2
Block diagram (4502 Group)	
Port block diagram (1)	1-8
Port block diagram (2)	
Port block diagram (3)	1-10
Port block diagram (4)	
External interrupt circuit structure	
Fig. 1 AMC instruction execution example	1-13
Fig. 2 RAR instruction execution example	
Fig. 3 Registers A, B and register E	
Fig. 4 TABP p instruction execution example	1-13
Fig. 5 Stack registers (SKs) structure	
Fig. 6 Example of operation at subroutine call	
Fig. 7 Program counter (PC) structure	1-15
Fig. 8 Data pointer (DP) structure	1-15
Fig. 9 SD instruction execution example	1-15
Fig. 10 ROM map of M34502M4/M34502E4	1-16
Fig. 11 Page 1 (addresses 0080 ₁₆ to 00FF ₁₆) structure	1-16
Fig. 12 RAM map	1-17
Fig. 13 Program example of interrupt processing	1-19
Fig. 14 Internal state when interrupt occurs	1-19
Fig. 15 Interrupt system diagram	1-19
Fig. 16 Interrupt sequence	1-21
Fig. 17 External interrupt circuit structure	1-22
Fig. 18 External 0 interrupt program example-1	1-24
Fig. 19 External 0 interrupt program example-2	1-24
Fig. 20 External 0 interrupt program example-3	1-24
Fig. 21 Auto-reload function	1-25
Fig. 22 Timers structure	1-26
Fig. 23 Count timing diagram at CNTR input	1-29
Fig. 24 Timer count start timing and count time when operation starts (T1, T2)	
Fig. 25 Watchdog timer function	1-30
Fig. 26 Program example to start/stop watchdog timer	1-31
Fig. 27 Program example to enter the RAM back-up mode when using the watchdog timer	1-31
Fig. 28 A/D conversion circuit structure	1-32
Fig. 29 A/D conversion timing chart	1-34
Fig. 30 Setting registers	1-34
Fig. 31 Comparator operation timing chart	1-35
Fig. 32 Definition of A/D conversion accuracy	1-36
Fig. 33 Reset release timing	
Fig. 34 RESET pin input waveform and reset operation	
Fig. 35 Structure of reset pin and its peripherals, and power-on reset operation	1-38
Fig. 36 Internal state at reset	1-39
Fig. 37 Voltage drop detection circuit	1-40
Fig. 38 Voltage drop detection circuit operation waveform example	1-40
Fig. 39 State transition	
Fig. 40 Set source and clear source of the P flag	1-43

	Fig. 41 Start condition identified example using the SNZP instruction	1-43
	Fig. 42 Clock control circuit structure	
	Fig. 43 Switch to ceramic resonance/RC oscillation	1-47
	Fig. 44 Handling of X _{IN} and X _{OUT} when operating on-chip oscillator	1-47
	Fig. 45 Ceramic resonator external circuit	1-47
	Fig. 46 External RC oscillation circuit	1-47
	Fig. 47 External clock input circuit	1-48
	Fig. 48 Timer count start timing and count time when operation starts (T1, T2)	1-49
	Fig. 49 External 0 interrupt program example-1	1-50
	Fig. 50 External 0 interrupt program example-2	1-50
	Fig. 51 External 0 interrupt program example-3	1-50
	Fig. 52 A/D conversion interrupt program example	1-51
	Fig. 53 Analog input external circuit example-1	1-51
	Fig. 54 Analog input external circuit example-2	1-51
	Fig. 55 Flow of writing and test of the product shipped in blank	1-104
	Fig. 56 Pin configuration of built-in PROM version	1-105
C	HAPTER 2 APPLICATION	
	Fig. 2.1.1 Key input by key scan	2-10
	Fig. 2.1.2 Key scan input timing	
	Fig. 2.2.1 INT interrupt operation example	
	Fig. 2.2.2 INT interrupt operation example	
	Fig. 2.2.3 Timer 1 constant period interrupt setting example	
	Fig. 2.2.4 Timer 2 constant period interrupt setting example	
	Fig. 2.3.1 Peripheral circuit example	
	Fig. 2.3.2 Watchdog timer function	
	Fig. 2.3.3 Constant period measurement setting example	
	Fig. 2.3.4 CNTR output setting example	
	Fig. 2.3.5 CNTR input setting example	
	Fig. 2.3.6 Timer start by external input setting example (1)	
	Fig. 2.3.7 Timer start by external input setting example (2)	
	Fig. 2.3.8 Watchdog timer setting example	
	Fig. 2.3.9 Timer count start timing and count time when operation starts (T1, T2)	
	Fig. 2.4.1 A/D converter structure	
	Fig. 2.4.2 A/D conversion mode setting example	
	Fig. 2.4.3 Analog input external circuit example-1	
	Fig. 2.4.4 Analog input external circuit example-2	
	Fig. 2.4.5 A/D converter operating mode program example	
	Fig. 2.5.1 Structure of reset pin and its peripherals, and power-on reset operation	
	Fig. 2.5.2 Oscillation stabilizing time after system is released from reset	
	Fig. 2.5.3 Internal state at reset	
	Fig. 2.6.1 Voltage drop detection circuit	
	Fig. 2.6.2 Voltage drop detection circuit operation waveform example	
	Fig. 2.7.1 Start condition identified example	
	Fig. 2.8.1 Switch to ceramic resonance/RC oscillation	
	Fig. 2.8.2 Handling of X _{IN} and X _{OUT} when operating on-chip oscillator	
	Fig. 2.8.3 Ceramic resonator external circuit	
	Fig. 2.8.4 External RC oscillation circuit	
	Fig. 2.8.5 Structure of clock control circuit	

CHAPTER 3 APPENDIX ■

Fig. 3.2.1 A/D conversion characteristics data	3-25
Fig. 3.3.1 External 0 interrupt program example-1	3-29
Fig. 3.3.2 External 0 interrupt program example-2	3-30
Fig. 3.3.3 External 0 interrupt program example-3	3-30
Fig. 3.3.4 Timer count start timing and count time when operation starts (T1, T2)	3-31
Fig. 3.3.5 Analog input external circuit example-1	3-32
Fig. 3.3.6 Analog input external circuit example-2	3-32
Fig. 3.3.7 A/D converter operating mode program example	3-32
Fig. 3.4.1 Selection of packages	3-36
Fig. 3.4.2 Wiring for the RESET input pin	3-36
Fig. 3.4.3 Wiring for clock I/O pins	3-37
Fig. 3.4.4 Wiring for CNVss pin	3-37
Fig. 3.4.5 Wiring for the VPP pin of the built-in PROM version	3-38
Fig. 3.4.6 Bypass capacitor across the Vss line and the VDD line	3-38
Fig. 3.4.7 Analog signal line and a resistor and a capacitor	3-39
Fig. 3.4.8 Wiring for a large current signal line	3-39
Fig. 3.4.9 Wiring to a signal line where potential levels change frequently	3-40
Fig. 3.4.10 Vss pattern on the underside of an oscillator	3-40
Fig. 3.4.11 Watchdog timer by software	3-41

List of tables

CHAPTER 1 HARDWARE	
Table Selection of system clock	1-6
Table 1 ROM size and pages	
Table 2 RAM size	
Table 3 Interrupt sources	
Table 4 Interrupt request flag, interrupt enable bit and skip instruction	
Table 5 Interrupt enable bit function	
Table 6 Interrupt control registers	
Table 7 External interrupt activated conditions	
Table 8 External interrupt control register	
Table 9 Function related timers	
Table 10 Timer control registers	1-27
Table 11 A/D converter characteristics	
Table 12 A/D control registers	1-33
Table 13 Change of successive comparison register AD during A/D conversion	1-34
Table 14 Port state at reset	1-38
Table 15 Functions and states retained at RAM back-up	1-41
Table 16 Return source and return condition	1-42
Table 17 Key-on wakeup control register	1-44
Table 18 Pull-up control register and interrupt control register	1-45
Table 19 Clock control register MR	1-48
Table 20 Product of built-in PROM version	1-104
CHAPTER 2 APPLICATION	
Table 2.1.1 Key-on wakeup control register K0	2-6
Table 2.1.2 Pull-up control register PU0	
Table 2.1.3 Key-on wakeup control register K1	
Table 2.1.4 Pull-up control register PU1	
Table 2.1.5 Key-on wakeup control register K2	
Table 2.1.6 Pull-up control register PU2	
Table 2.1.7 Timer control register W6	
Table 2.1.8 connections of unused pins	
Table 2.2.1 Interrupt control register V1	
Table 2.2.2 Interrupt control register V2	
Table 2.2.3 Interrupt control register I1	
Table 2.3.1 Interrupt control register V1	
Table 2.3.2 Timer control register W1	
Table 2.3.3 Timer control register W2	
Table 2.3.4 Timer control register W6	
Table 2.3.5 Recommended operating condition of pulse width input to CNTR pin	
Table 2.4.1 A/D control register Q1	
Table 2.4.2 Recommended operating conditions (when using A/D converter)	

Table 2.7.1 Functions and states retained	d at RAM back-up mode2-43
Table 2.7.2 Return source and return cor	ndition2-44
Table 2.7.3 Start condition identification	2-44
Table 2.7.4 Key-on wakeup control regist	ter K02-45
	2-45
Table 2.7.6 Key-on wakeup control regist	ter K12-46
Table 2.7.7 Pull-up control register PU1.	2-46
Table 2.7.8 Key-on wakeup control regist	ter K22-47
Table 2.7.9 Pull-up control register PU2.	2-47
Table 2.7.10 Interrupt control register I1.	2-48
Table 2.8.1 Maximum value of oscillation	frequency and supply voltage2-51
CHAPTER 3 APPENDIX	
Table 3.1.1 Absolute maximum ratings	
Table 3.1.1 Absolute maximum ratings Table 3.1.2 Recommended operating con	
Table 3.1.1 Absolute maximum ratings Table 3.1.2 Recommended operating con Table 3.1.3 Recommended operating con	ditions 1 3-3
Table 3.1.1 Absolute maximum ratings Table 3.1.2 Recommended operating con Table 3.1.3 Recommended operating con Table 3.1.4 Electrical characteristics	aditions 1
Table 3.1.1 Absolute maximum ratings Table 3.1.2 Recommended operating con Table 3.1.3 Recommended operating con Table 3.1.4 Electrical characteristics Table 3.1.5 A/D converter recommended	aditions 1
Table 3.1.1 Absolute maximum ratings Table 3.1.2 Recommended operating con Table 3.1.3 Recommended operating con Table 3.1.4 Electrical characteristics Table 3.1.5 A/D converter recommended Table 3.1.6 A/D converter characteristcs.	additions 1 3-3 additions 2 3-4
Table 3.1.1 Absolute maximum ratings Table 3.1.2 Recommended operating con Table 3.1.3 Recommended operating con Table 3.1.4 Electrical characteristics Table 3.1.5 A/D converter recommended Table 3.1.6 A/D converter characteristcs. Table 3.1.7 Voltage drop detection circuit	aditions 1
Table 3.1.1 Absolute maximum ratings Table 3.1.2 Recommended operating con Table 3.1.3 Recommended operating con Table 3.1.4 Electrical characteristics Table 3.1.5 A/D converter recommended Table 3.1.6 A/D converter characteristcs. Table 3.1.7 Voltage drop detection circuit Table 3.3.1 Connections of unused pins. Table 3.3.2 Recommended operating con	aditions 1 3-3 aditions 2 3-4

CHAPTER 1

HARDWARE

DESCRIPTION
FEATURES
APPLICATION
PIN CONFIGURATION
BLOCK DIAGRAM
PERFORMANCE OVERVIEW
PIN DESCRIPTION
FUNCTION BLOCK OPERATIONS
ROM ORDERING METHOD
LIST OF PRECAUTIONS
CONTROL REGISTERS
INSTRUCTIONS
BUILT-IN PROM VERSION

(Ta = 25 °C)

DESCRIPTION

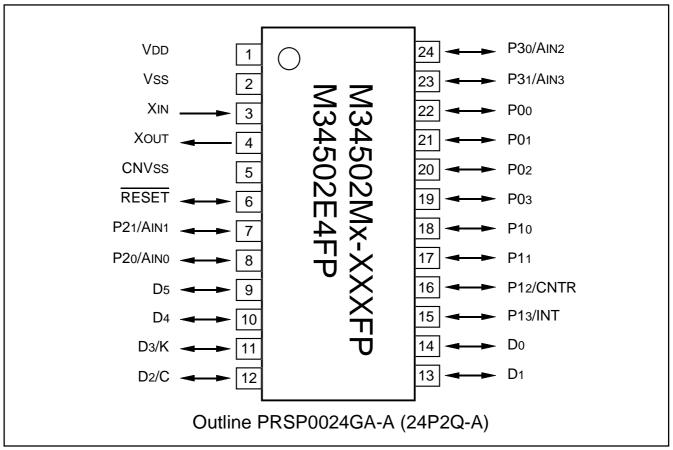
The 4502 Group is a 4-bit single-chip microcomputer designed with CMOS technology. Its CPU is that of the 4500 series using a simple, high-speed instruction set. The computer is equipped with two 8-bit timers (each timer has a reload register), interrupts, and 10-bit A/D converter.

The various microcomputers in the 4502 Group include variations of the built-in memory size as shown in the table below.

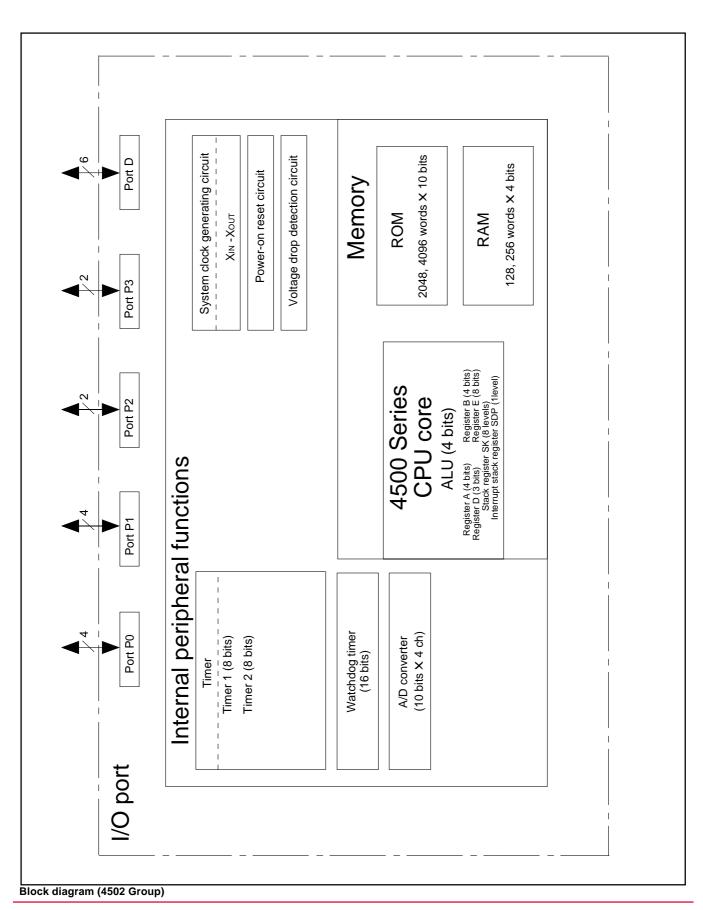
FEATURES

Timer 1 8-bit timer with a reload register
Timer 2 8-bit timer with a reload register
●Interrupt
● Key-on wakeup function pins
•Input/Output port
● A/D converter10-bit successive comparison method
 Watchdog timer
 Clock generating circuit (ceramic resonator/RC oscillation)
◆LED drive directly enabled (port D)
●Power-on reset circuit
● Voltage drop detection circuit VRST: Typ. 3.5 V

APPLICATION


Timers

Electrical household appliance, consumer electronic products, office automation equipment, etc.


Part number	ROM (PROM) size (X 10 bits)	RAM size (X 4 bits)	Package	ROM type
M34502M2-XXXFP	2048 words	128 words	PRSP0024GA-A	Mask ROM
M34502M4-XXXFP	4096 words	256 words	PRSP0024GA-A	Mask ROM
M34502E4FP (Note)	4096 words	256 words	PRSP0024GA-A	One Time PROM

Note: Shipped in blank.

PIN CONFIGURATION

Pin configuration (top view) (4502 Group)

PERFORMANCE OVERVIEW

Parameter		r	Function		
Number of basic instructions			113		
Minimum instruction execution time		cution time	0.68 μs (at 4.4 MHz oscillation frequency, in high-speed mode)		
Memory sizes	ROM M34502M2		2048 words X 10 bits		
		M34502M4/E4	4096 words X 10 bits		
	RAM	M34502M2	128 words X 4 bits		
		M34502M4/E4	256 words X 4 bits		
Input/Output ports	D0-D5	I/O	Six independent I/O ports. Input is examined by skip decision. Ports D2 and D3 are equipped with a pull-up function and a key-on wakeup function. Both functions can be switched by software. Ports D2 and D3 are also used as ports C and K, respectively.		
	P00-P03	I/O	4-bit I/O port; each pin is equipped with a pull-up function and a key-on wakeup function. Both functions can be switched by software.		
	P10-P13	I/O	4-bit I/O port; each pin is equipped with a pull-up function and a key-on wakeup function. Both functions can be switched by software. Ports P12 and P13 are also used as CNTR and INT, respectively.		
	P20, P21	I/O	2-bit I/O port; each pin is equipped with a pull-up function and a key-on wakeup function. Both functions can be switched by software. Ports P20 and P21 are also used as AINO and AIN1, respectively.		
	P30, P31	I/O	2-bit I/O port; Ports P30 and P31 are also used as AIN2 and AIN3, respectively.		
	С	I/O	1-bit I/O; Port C is also used as port D2.		
	K	I/O	1-bit I/O; Port K is also used as port D3.		
	CNTR	Timer I/O	1-bit I/O; CNTR pin is also used as port P12.		
	INT	Interrupt input	1-bit input; INT pin is also used as port P13.		
	AIN0, AIN1 AIN2, AIN3	Analog input	Four independent I/O ports. AIN0-AIN3 is also used as ports P20, P21, P30, P31, respectively.		
Timers	Timer 1		8-bit programmable timer with a reload register.		
	Timer 2		8-bit programmable timer with a reload register and has a event counter.		
A/D converter	ſ		10-bit wide, This is equipped with an 8-bit comparator function.		
	Analog in	put	4 channel (AIN0 pin–AIN3 pin)		
Interrupt	Sources		4 (one for external, two for timer, one for A/D)		
	Nesting		1 level		
Subroutine ne	sting		8 levels		
Device structure			CMOS silicon gate		
Package			24-pin plastic molded SSOP (PRSP0024GA-A)		
Operating temperature range			−20 °C to 85 °C		
Supply voltage			2.7 to 5.5 V (System is in the reset state when the voltage is under the detection voltage of voltage drop detection circuit)		
Power dissipation	Active mo	de	1.7 mA (Ta=25°C, VDD = 5.0 V, 4.0 MHz oscillation frequency, in high-speed mode, output transistors in the cut-off state)		
(typical value) RAM back-up mode		k-up mode	0.1 μ A (Ta=25°C, VDD = 5 V, output transistors in the cut-off state)		

PIN DESCRIPTION

Pin	Name	Input/Output	Function
VDD	Power supply	_	Connected to a plus power supply.
Vss	Ground	_	Connected to a 0 V power supply.
CNVss	CNVss	_	Connect CNVss to Vss and apply "L" (0V) to CNVss certainly.
RESET	Reset input/output	I/O	An N-channel open-drain I/O pin for a system reset. When the watchdog timer, the built-in power-on reset or the voltage drop detection circuit causes the system to be reset, the RESET pin outputs "L" level.
XIN	System clock input	Input	I/O pins of the system clock generating circuit. When using a ceramic resonator, connect
Хоит	System clock output	Output	it between pins XIN and XOUT. A feedback resistor is built-in between them. When using the RC oscillation, connect a resistor and a capacitor to XIN, and leave XOUT pin open.
D0-D5	I/O port D	I/O	Each pin of port D has an independent 1-bit wide I/O function. Each pin has an output latch. For input use, set the latch of the specified bit to "1." Input is examined by skip decision. The output structure is N-channel open-drain. Ports D2 and D3 are equipped with a pull-up function and a key-on wakeup function. Both functions can be switched by software. Ports D2 and D3 are also used as ports C and K, respectively.
P00-P03	I/O port P0	I/O	Port P0 serves as a 4-bit I/O port, and it can be used as inputs when the output latch is set to "1." The output structure is N-channel open-drain. Port P0 has a key-on wakeup function and a pull-up function. Both functions can be switched by software.
P10-P13	I/O port P1	I/O	Port P1 serves as a 4-bit I/O port, and it can be used as inputs when the output latch is set to "1." The output structure is N-channel open-drain. Port P1 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports P12 and P13 are also used as CNTR and INT, respectively.
P20, P21	I/O port P2	I/O	Port P2 serves as a 2-bit I/O port, and it can be used as inputs when the output latch is set to "1." The output structure is N-channel open-drain. Port P2 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports P2o and P21 are also used as AINO and AIN1, respectively.
P30, P31	I/O port P3	I/O	Port P3 serves as a 2-bit I/O port, and it can be used as inputs when the output latch is set to "1." The output structure is N-channel open-drain. Ports P30 and P31 are also used as AIN2 and AIN3, respectively.
Port C	I/O port C	I/O	1-bit I/O port. Port C can be used as inputs when the output latch is set to "1." The output structure is N-channel open-drain. Port C has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Port C is also used as port D2.
Port K	I/O port K	I/O	1-bit I/O port. Port K can be used as inputs when the output latch is set to "1." The output structure is N-channel open-drain. Port K has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Port K is also used as port D3.
CNTR	Timer input/output	I/O	CNTR pin has the function to input the clock for the timer 2 event counter, and to output the timer 1 or timer 2 underflow signal divided by 2. This pin is also used as port P12.
INT	Interrupt input	Input	INT pin accepts external interrupts. It has the key-on wakeup function which can be switched by software. This pin is also used as port P13.
AIN0-AIN3	Analog input	Input	A/D converter analog input pins. AIN0 and AIN1 are also used as ports P20 and P21, respectively. AIN2 and AIN3 are also used as ports P30 and P31, respectively.

MULTIFUNCTION

Pin	Multifunction	Pin	Multifunction	Pin	Multifunction	Pin	Multifunction
D2	С	С	D2	P20	AIN0	AIN0	P20
D3	K	K	D3	P21	AIN1	AIN1	P21
P12	CNTR	CNTR	P12	P30	AIN2	AIN2	P30
P13	INT	INT	P13	P31	AIN3	AIN3	P31

- Notes 1: Pins except above have just single function.
 2: The input/output of D2, D3, P12 and P13 can be used even when C, K, CNTR (input) and INT are selected.
 - 3: The input of P12 can be used even when CNTR (output) is selected.
 - 4: The input/output of P20, P21, P30 and P31 can be used even when AIN0, AIN1, AIN2 and AIN3 are selected.

4502 Group

DEFINITION OF CLOCK AND CYCLE

Operation source clock

The operation source clock is the source clock to operate this product. In this product, the following clocks are used.

- External ceramic resonator
- External RC oscillation
- Clock (f(XIN)) by the external clock
- Clock (f(RING)) of the on-chip oscillator which is the internal oscillator.]

System clock

The system clock is the basic clock for controlling this product. The system clock is selected by the bits 2 and 3 of the clock control register MR.

Table Selection of system clock

Regist	er MR	System clock	Operation mode
MR ₃	MR2	(Note 1)	
0	0	f(XIN) or f(RING)	High-speed mode
0	1	f(XIN)/2 or f(RING)/2	Middle-speed mode
1	0	f(XIN)/4 or f(RING)/4	Low-speed mode
1	1	f(XIN)/8 or f(RING)/8	Default mode

- **Notes 1:** The on-chip oscillator clock is f(RING), the clock by the ceramic resonator, RC oscillation or external clock is f(XIN).
 - **2:** The default mode is selected after system is released from reset and is returned from RAM back-up.

Instruction clock

The instruction clock is a signal derived by dividing the system clock by 3. The one instruction clock cycle generates the one machine cycle.

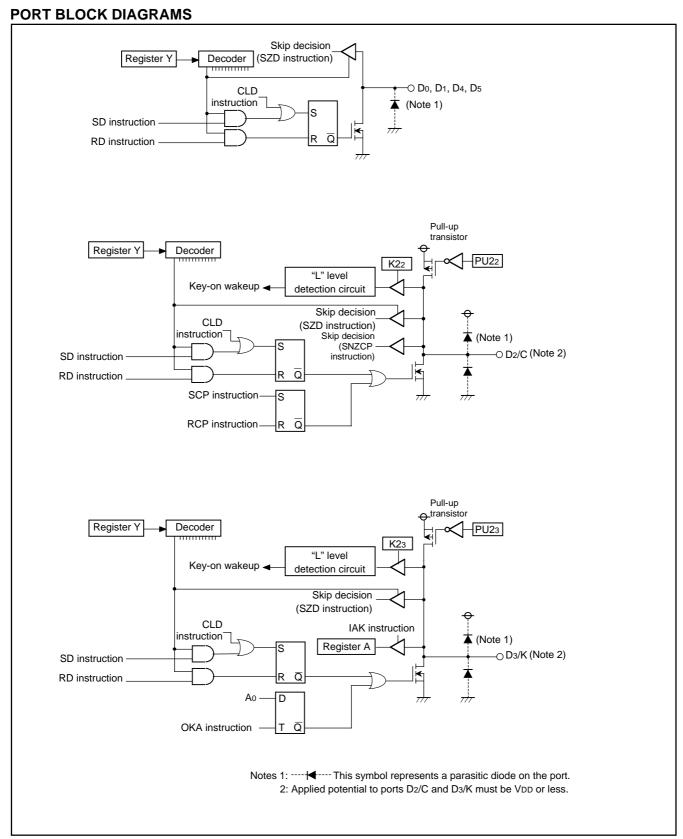
Machine cycle

The machine cycle is the standard cycle required to execute the instruction.

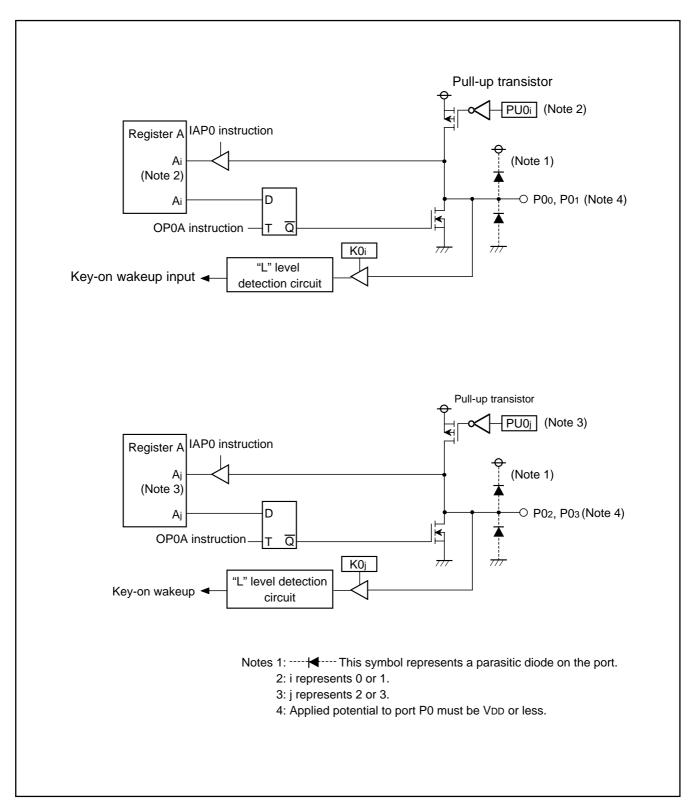
PORT FUNCTION

Port	Pin	Input Output	Output structure	I/O unit	Control instructions	Control registers	Remark
Port D	D0, D1, D4, D5 D2/C D3/K	I/O (6)	N-channel open-drain	1	SD, RD SZD, CLD SCP, RCP SNZCP IAK, OKA	PU2, K2	Built-in programmable pull-up functions Key-on wakeup functions (programmable)
Port P0	P00-P03	I/O (4)	N-channel open-drain	4	OP0A IAP0	PU0, K0	Built-in programmable pull-up functions Key-on wakeup functions (programmable)
Port P1	P10, P11 P12/CNTR, P13/INT	I/O (4)	N-channel open-drain	4	OP1A IAP1	PU1, K1 W6, I1	Built-in programmable pull-up functions Key-on wakeup functions (programmable)
Port P2	P20/AIN0 P21/AIN1	I/O (2)	N-channel open-drain	2	OP2A IAP2	PU2, K2 Q1	Built-in programmable pull-up functions Key-on wakeup functions (programmable)
Port P3	P30/AIN2 P31/AIN3	I/O (2)	N-channel open-drain	2	OP3A IAP3	Q1	

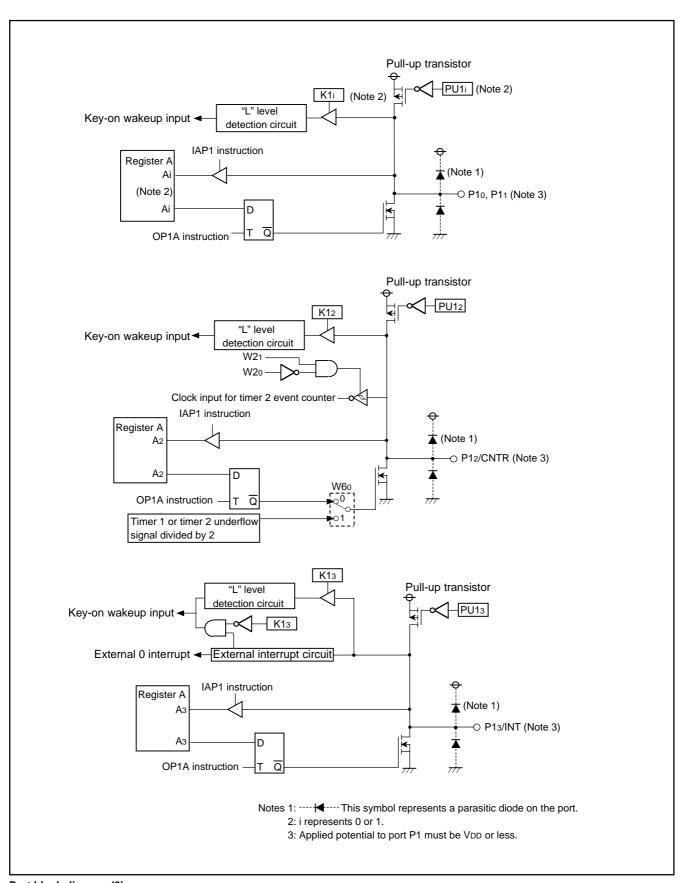
CONNECTIONS OF UNUSED PINS


Pin	Connection	Usage condition		
XIN	Connect to Vss.	System operates by the on-chip oscillator. (Note 1)		
Xout	Open.	System operates by the external clock.		
		(The ceramic resonator is selected with the CMCK instruction.)		
		System operates by the RC oscillator.		
		(The RC oscillation is selected with the CRCK instruction.)		
		System operates by the on-chip oscillator. (Note 1)		
D0, D1	Open. (Output latch is set to "1.")			
D4, D5	Open. (Output latch is set to "0.")			
	Connect to Vss.			
D2/C	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)		
D ₃ /K	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)		
	Connect to Vss.	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)		
P00-P03	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)		
	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)		
	Connect to Vss.	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)		
P10, P11	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)		
P12/CNTR	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)		
	Connect to Vss.	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)		
P13/INT	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. The input to INT pin is disabled.		
		(Notes 4, 5)		
	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)		
	Connect to Vss.	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)		
P20/AIN0	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)		
P21/AIN1	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)		
	Connect to Vss.	The pull-up function and the key-on wakeup function are not selected. (Notes 2, 3)		
P30/AIN2	Open. (Output latch is set to "1.")			
P31/AIN3	Open. (Output latch is set to "0.")			
	Connect to Vss.			

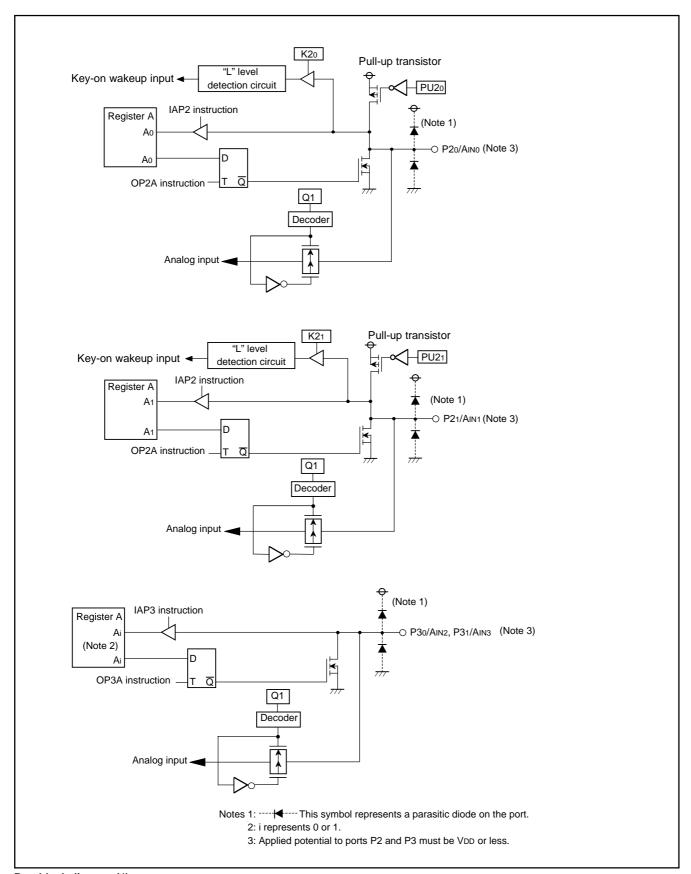
Notes 1: When the ceramic resonator or the RC oscillation is not selected by program, system operates by the on-chip oscillator (internal oscillator).


- 2: When the pull-up function is left valid, the supply current is increased. Do not select the pull-up function.
- 3: When the key-on wakeup function is left valid, the system returns from the RAM back-up state immediately after going into the RAM back-up state. Do not select the key-on wakeup function.
- 4: When selecting the key-on wakeup function, select also the pull-up function.
- 5: Clear the bit 3 (I13) of register I1 to "0" to disable to input to INT pin (after reset: I13 = "0")

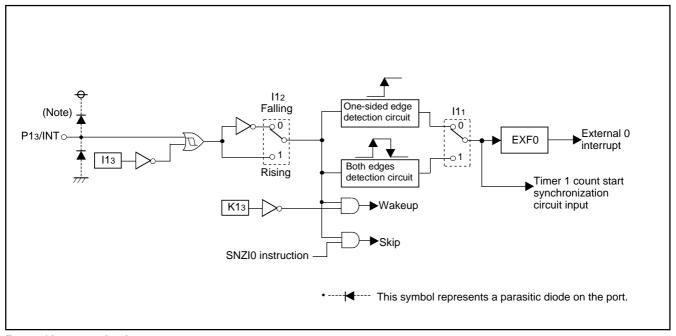
(Note when connecting to Vss)


• Connect the unused pins to Vss using the thickest wire at the shortest distance against noise.

Port block diagram (1)



Port block diagram (2)


Port block diagram (3)

4502 Group PIN DESCRIPTION

Port block diagram (4)

PIN DESCRIPTION 4502 Group

External interrupt circuit structure

FUNCTION BLOCK OPERATIONS CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-bit data addition, comparison, AND operation, OR operation, and bit manipulation.

(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.

Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (Figure 1).

It is unchanged with both A n instruction and AM instruction. The value of Ao is stored in carry flag CY with the RAR instruction (Figure 2).

Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction.

(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A.

Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).

Register E is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

(4) Register D

Register D is a 3-bit register.

It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 4).

Register D is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

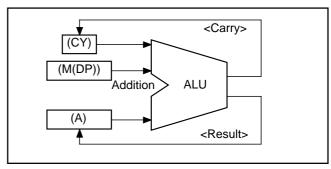


Fig. 1 AMC instruction execution example

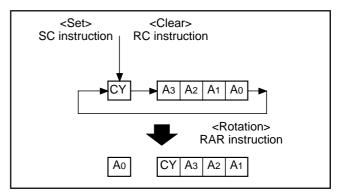


Fig. 2 RAR instruction execution example

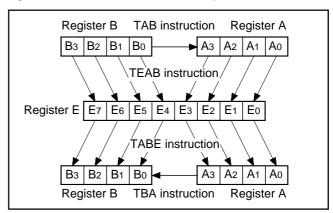


Fig. 3 Registers A, B and register E

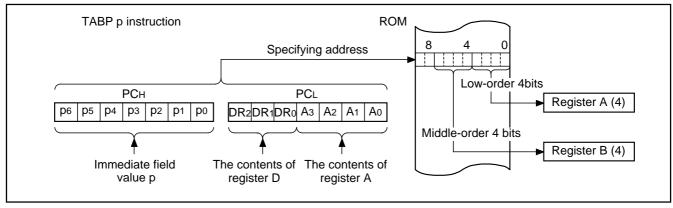


Fig. 4 TABP p instruction execution example

(5) Stack registers (SKs) and stack pointer (SP)

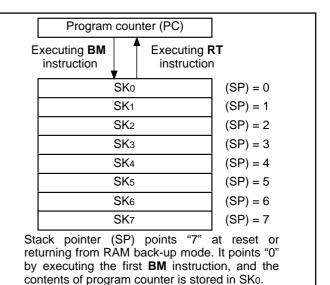
Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- branching to an interrupt service routine (referred to as an interrupt service routine),
- · performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together. The contents of registers SKs are destroyed when 8 levels are exceeded.

The register SK nesting level is pointed automatically by 3-bit stack pointer (SP). The contents of the stack pointer (SP) can be transferred to register A with the TASP instruction.

Figure 5 shows the stack registers (SKs) structure.


Figure 6 shows the example of operation at subroutine call.

(6) Interrupt stack register (SDP)

Interrupt stack register (SDP) is a 1-stage register. When an interrupt occurs, this register (SDP) is used to temporarily store the contents of data pointer, carry flag, skip flag, register A, and register B just before an interrupt until returning to the original routine. Unlike the stack registers (SKs), this register (SDP) is not used when executing the subroutine call instruction and the table reference instruction.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions. When an interrupt occurs, the contents of skip flag is stored automatically in the interrupt stack register (SDP) and the skip condition is retained.

When the BM instruction is executed after eight

stack registers are used ((SP) = 7), (SP) = 0

and the contents of SKo is destroyed.

Fig. 5 Stack registers (SKs) structure

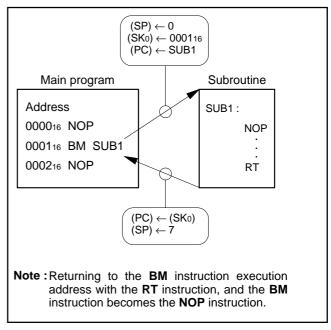


Fig. 6 Example of operation at subroutine call

(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.

Program counter consists of PCH (most significant bit to bit 7) which specifies to a ROM page and PCL (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).

Make sure that the PCH does not specify after the last page of the built-in ROM.

(9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers Z, X, and Y. Register Z specifies a RAM file group, register X specifies a file, and register Y specifies a RAM digit (Figure 8).

Register Y is also used to specify the port D bit position.

When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9).

• Note

Register Z of data pointer is undefined after system is released from reset

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

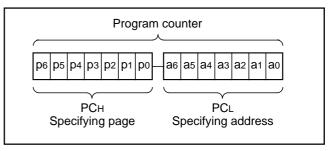


Fig. 7 Program counter (PC) structure

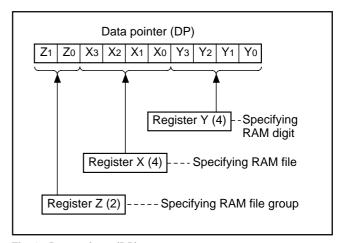


Fig. 8 Data pointer (DP) structure

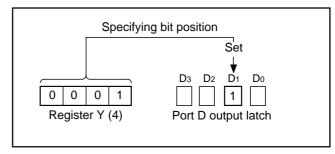


Fig. 9 SD instruction execution example

PROGRAM MEMOY (ROM)

The program memory is a mask ROM. 1 word of ROM is composed of 10 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127). Table 1 shows the ROM size and pages. Figure 10 shows the ROM map of M34502M4.

Table 1 ROM size and pages

Part number	ROM (PROM) size (X 10 bits)	Pages
M34502M2	2048 words	16 (0 to 15)
M34502M4	4096 words	32 (0 to 31)
M34502E4	4096 words	32 (0 to 31)

A part of page 1 (addresses 008016 to 00FF16) is reserved for interrupt addresses (Figure 11). When an interrupt occurs, the address (interrupt address) corresponding to each interrupt is set in the program counter, and the instruction at the interrupt address is executed. When using an interrupt service routine, write the instruction generating the branch to that routine at an interrupt address.

Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.

ROM pattern (bits 7 to 0) of all addresses can be used as data areas with the TABP ρ instruction.

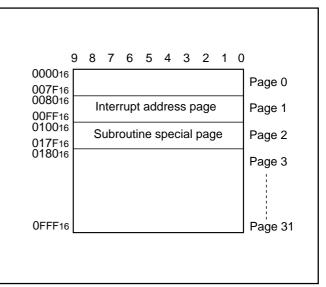


Fig. 10 ROM map of M34502M4/M34502E4

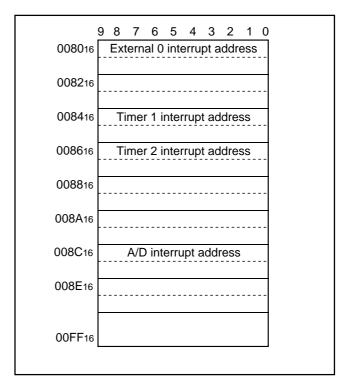


Fig. 11 Page 1 (addresses 008016 to 00FF16) structure

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers Z, X, and Y. Set a value to the data pointer certainly when executing an instruction to access RAM.

Table 2 shows the RAM size. Figure 12 shows the RAM map.

• Note

Register Z of data pointer is undefined after system is released from reset.

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

Table 2 RAM size

Part number	RAM size
M34502M2	128 words X 4 bits (512 bits)
M34502M4	256 words X 4 bits (1024 bits)
M34502E4	256 words X 4 bits (1024 bits)

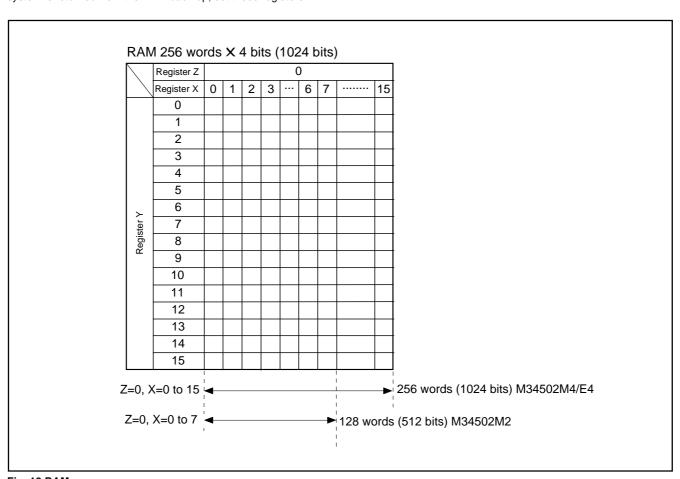


Fig. 12 RAM map

INTERRUPT FUNCTION

The interrupt type is a vectored interrupt branching to an individual address (interrupt address) according to each interrupt source. An interrupt occurs when the following 3 conditions are satisfied.

- An interrupt activated condition is satisfied (request flag = "1")
- Interrupt enable bit is enabled ("1")
- Interrupt enable flag is enabled (INTE = "1")

Table 3 shows interrupt sources. (Refer to each interrupt request flag for details of activated conditions.)

(1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable. Interrupts are enabled when INTE flag is set to "1" with the EI instruction and disabled when INTE flag is cleared to "0" with the DI instruction. When any interrupt occurs, the INTE flag is automatically cleared to "0," so that other interrupts are disabled until the EI instruction is executed.

(2) Interrupt enable bit

Use an interrupt enable bit of interrupt control registers V1 and V2 to select the corresponding interrupt or skip instruction.

Table 4 shows the interrupt request flag, interrupt enable bit and skip instruction.

Table 5 shows the interrupt enable bit function.

(3) Interrupt request flag

When the activated condition for each interrupt is satisfied, the corresponding interrupt request flag is set to "1." Each interrupt request flag is cleared to "0" when either;

- an interrupt occurs, or
- the next instruction is skipped with a skip instruction.

Each interrupt request flag is set when the activated condition is satisfied even if the interrupt is disabled by the INTE flag or its interrupt enable bit. Once set, the interrupt request flag retains set until a clear condition is satisfied.

Accordingly, an interrupt occurs when the interrupt disable state is released while the interrupt request flag is set.

If more than one interrupt request flag is set when the interrupt disable state is released, the interrupt priority level is as follows shown in Table 3.

Table 3 Interrupt sources

<u> </u>	terrapt sources		
Priority level	Interrupt name	Activated condition	Interrupt address
1	External 0 interrupt	Level change of INT pin	Address 0 in page 1
2	Timer 1 interrupt	Timer 1 underflow	Address 4 in page 1
3	Timer 2 interrupt	Timer 2 underflow	Address 6 in page 1
4	A/D interrupt	Completion of A/D conversion	Address C in page 1

Table 4 Interrupt request flag, interrupt enable bit and skip instruction

Interrupt name	Interrupt request flag	Skip instruction	Interrupt enable bit
External 0 interrupt	EXF0	SNZ0	V10
Timer 1 interrupt	T1F	SNZT1	V12
Timer 2 interrupt	T2F	SNZT2	V13
A/D interrupt	ADF	SNZAD	V22

Table 5 Interrupt enable bit function

Interrupt enable bit	Occurrence of interrupt	Skip instruction
1	Enabled	Invalid
0	Disabled	Valid

(4) Internal state during an interrupt

The internal state of the microcomputer during an interrupt is as follows (Figure 14).

- Program counter (PC)
 - An interrupt address is set in program counter. The address to be executed when returning to the main routine is automatically stored in the stack register (SK).
- Interrupt enable flag (INTE)
 INTE flag is cleared to "0" so that interrupts are disabled.
- Interrupt request flag
 Only the request flag for the current interrupt source is cleared to "0."
- Data pointer, carry flag, skip flag, registers A and B
 The contents of these registers and flags are stored automatically in the interrupt stack register (SDP).

(5) Interrupt processing

When an interrupt occurs, a program at an interrupt address is executed after branching a data store sequence to stack register. Write the branch instruction to an interrupt service routine at an interrupt address.

Use the RTI instruction to return from an interrupt service routine. Interrupt enabled by executing the EI instruction is performed after executing 1 instruction (just after the next instruction is executed). Accordingly, when the EI instruction is executed just before the RTI instruction, interrupts are enabled after returning the main routine. (Refer to Figure 13)

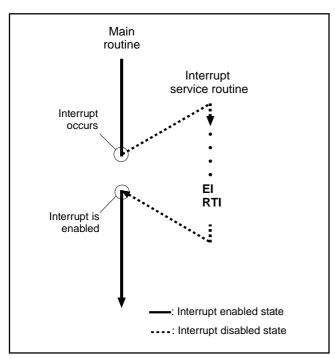


Fig. 13 Program example of interrupt processing

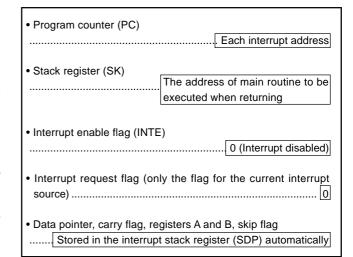


Fig. 14 Internal state when interrupt occurs

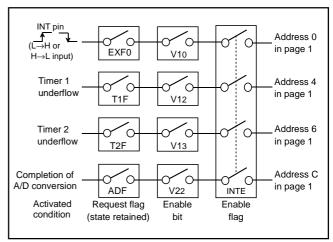


Fig. 15 Interrupt system diagram

(6) Interrupt control registers

Interrupt control register V1
 Interrupt enable bits of external 0, timer 1 and timer 2 are assigned to register V1. Set the contents of this register through register A with the TV1A instruction. The TAV1 instruction can be used to transfer the contents of register V1 to register A.

Interrupt control register V2
 The A/D interrupt enable bit is assigned to register V2. Set the contents of this register through register A with the TV2A instruc

tion. The TAV2 instruction can be used to transfer the contents of register V2 to register A.

Table 6 Interrupt control registers

	Interrupt control register V1		reset : 00002	at RAM back-up : 00002	R/W		
\/12	V13 Timer 2 interrupt enable bit		Interrupt disabled (SNZT2 instruction is valid)				
V 13			Interrupt enabled (SNZT2 instruction is invalid) (Note 2)				
V12	Timer 1 interrupt enable bit	0	Interrupt disabled (SNZT1 instruction is valid)				
V 12	V12 Timer i interrupt enable bit		Interrupt enabled (SNZT1 instruction is invalid) (Note 2)				
V11	Not used	0	This bit has no function, but read/write is enabled.				
V 11	V11 Not used		This bit has no function, but read/write is enabled.				
V10	External 0 interrupt enable bit	0	Interrupt disabled (SNZ0 instruction is valid)				
V 10	External o interrupt eriable bit	1	Interrupt enabled (SNZ0 instruction is invalid) (Note 2)				

	Interrupt control register V2		reset : 00002	at RAM back-up : 00002	R/W
1/20	V23 Not used				
V23			This bit has no function, but read/write is enabled.		
1/00	V22 A/D interrupt enable bit		Interrupt disabled (SNZAD instruction is valid)		
V Z 2			Interrupt enabled (SNZAD instruction is invalid) (Note 2)		
1/04	Not used	0	This bit has no function, but read/write is enabled.		
V21	V21 Not used		This sit has no randition, but rough write is chabled.		
Vo. Not used		0	This bit has no function, but read/write is enabled.		
V20	V2 ₀ Not used		This bit has no function, but read/write is enabled.		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

(7) Interrupt sequence

Interrupts only occur when the respective INTE flag, interrupt enable bits (V10, V12, V13, V22), and interrupt request flag are "1." The interrupt actually occurs 2 to 3 machine cycles after the cycle in which all three conditions are satisfied. The interrupt occurs after 3 machine cycles only when the three interrupt conditions are satisfied on execution of other than one-cycle instructions (Refer to Figure 16).

^{2:} These instructions are equivalent to the NOP instruction.

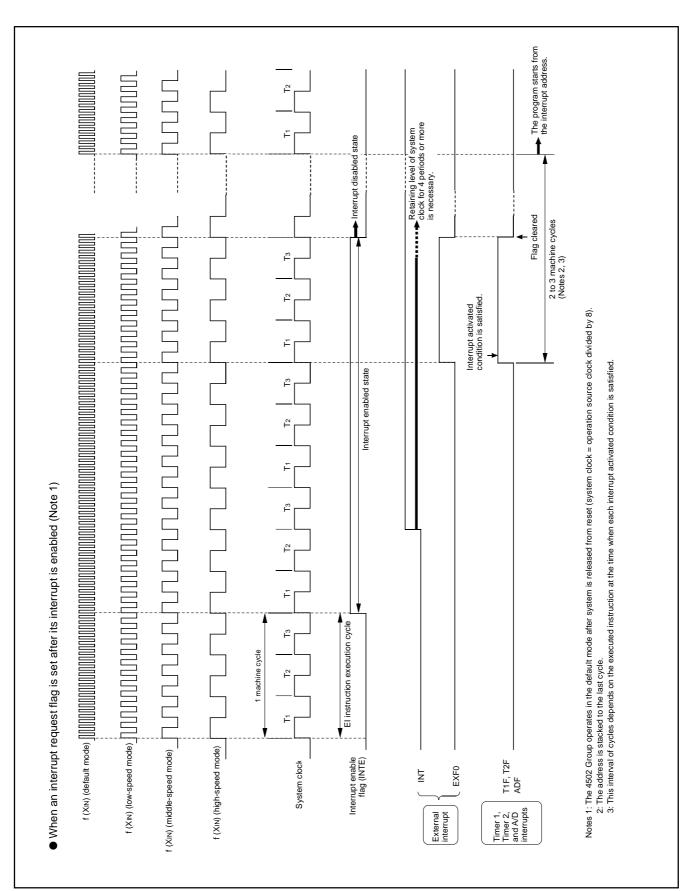


Fig. 16 Interrupt sequence

EXTERNAL INTERRUPTS

The 4502 Group has the external 0 interrupt. An external interrupt request occurs when a valid waveform is input to an interrupt input pin (edge detection).

The external interrupt can be controlled with the interrupt control register I1.

Table 7 External interrupt activated conditions

Name	Input pin	Activated condition	Valid waveform selection bit
External 0 interrupt	INT	When the next waveform is input to INT pin	I 11
		Falling waveform ("H"→"L")	l12
		Rising waveform ("L"→"H")	
		Both rising and falling waveforms	

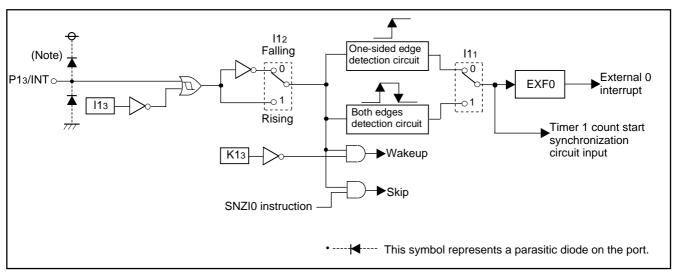


Fig. 17 External interrupt circuit structure

(1) External 0 interrupt request flag (EXF0)

External 0 interrupt request flag (EXF0) is set to "1" when a valid waveform is input to INT pin.

The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16).

The state of EXF0 flag can be examined with the skip instruction (SNZ0). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF0 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction.

- External 0 interrupt activated condition
 - External 0 interrupt activated condition is satisfied when a valid waveform is input to INT pin.
 - The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 0 interrupt is as follows.

- ① Set the bit 3 of register I1 to "1" for the INT pin to be in the input enabled state.
- ② Select the valid waveform with the bits 1 and 2 of register I1.
- 3 Clear the EXF0 flag to "0" with the SNZ0 instruction.
- Set the NOP instruction for the case when a skip is performed
 with the SNZ0 instruction.
- Set both the external 0 interrupt enable bit (V10) and the INTE flag to "1."

The external 0 interrupt is now enabled. Now when a valid waveform is input to the INT pin, the EXF0 flag is set to "1" and the external 0 interrupt occurs.

(2) External interrupt control registers

• Interrupt control register I1

Register I1 controls the valid waveform for the external 0 interrupt. Set the contents of this register through register A with the TI1A instruction. The TAI1 instruction can be used to transfer the contents of register I1 to register A.

Table 8 External interrupt control register

Interrupt control register I1		at reset : 00002		at RAM back-up : state retained	R/W
l13	INT pin input control bit (Note 2)	0	INT pin input disabled		
	in pin input control bit (Note 2)	1	INT pin input enabled		
l12		0	Falling waveform ("L" level of INT pin is recognized with the SNZI0		
	Interrupt valid waveform for INT pin/ return level selection bit (Note 2)		instruction)/"L" level		
		1	Rising waveform ("H" level of INT pin is recognized with the SNZI0		
			instruction)/"H" level		
I 111	INT pin edge detection circuit control bit	0	One-sided edge detected		
	INT pin eage detection circuit control bit	1	Both edges detected		
I1 0	INT pin	0	Disabled		
	timer 1 control enable bit	1	Enabled		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set. Accordingly, clear EXF0 flag with the SNZ0 instruction when the bit 0 (V10) of register V1 to "0". In this time, set the NOP instruction after the SNZ0 instruction, for the case when a skip is performed with the SNZ0 instruction.

(3) Notes on interrupts

- $\ensuremath{\textcircled{1}}$ Note [1] on bit 3 of register I1
 - When the input of the INT pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.
- Depending on the input state of the P13/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 18⁽¹⁾) and then, change the bit 3 of register I1.
 - In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 182).
 - Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 18³).

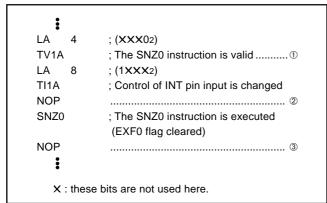


Fig. 18 External 0 interrupt program example-1

- 2 Note [2] on bit 3 of register I1
 - When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.
- When the key-on wakeup function of port P13 is not used (register K13 = "0"), clear bits 2 and 3 of register I1 before system enters to the RAM back-up mode. (refer to Figure 19①).

Fig. 19 External 0 interrupt program example-2

- ③ Note [3] on bit 2 of register I1 When the interrupt valid waveform of the P13/INT pin is changed with the bit 2 of register I1 in software, be careful about the following notes.
- Depending on the input state of the P13/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 20⁽¹⁾) and then, change the bit 2 of register I1 is changed. In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 20⁽²⁾). Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 20⁽³⁾).

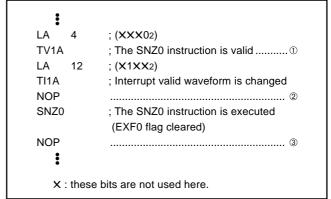


Fig. 20 External 0 interrupt program example-3

TIMERS

The 4502 Group has the following timers.

· Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n + 1), a timer interrupt request flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function).

Fixed dividing frequency timer
 The fixed dividing frequency timer has the fixed frequency dividing ratio (n). An interrupt request flag is set to "1" after every n count of a count pulse.

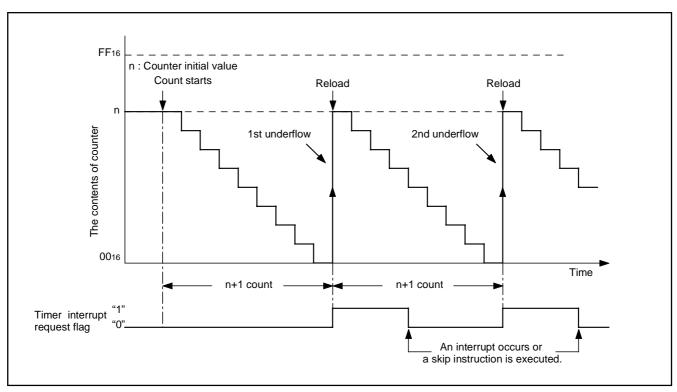


Fig. 21 Auto-reload function

The 4502 Group timer consists of the following circuits.

- Prescaler : frequency divider
- Timer 1 : 8-bit programmable timer
- Timer 2: 8-bit programmable timer
 (Timers 1 and 2 have the interrupt function, respectively)
- 16-bit timer

Prescaler and timers 1 and 2 can be controlled with the timer control registers W1, W2 and W6. The 16-bit timer is a free counter which is not controlled with the control register.

Each function is described below.

Table 9 Function related timers

Circuit	Structure	Count source	Frequency dividing ratio	Use of output signal	Control register
Prescaler	Frequency divider	Instruction clock	4, 16	Timer 1 and 2 count sources	W1
Timer 1	8-bit programmable	Prescaler output (ORCLK)	1 to 256	Timer 2 count source	W1
	binary down counter			CNTR output	W2
	(link to INT input)			Timer 1 interrupt	W6
Timer 2	8-bit programmable	Timer 1 underflow	1 to 256	CNTR output	W2
	binary down counter	Prescaler output (ORCLK)		Timer 2 interrupt	W6
		CNTR input			
		System clock			
16-bit timer	16-bit fixed dividing	Instruction clock	65536	Watchdog timer	
	frequency binary down			(The 16th bit is counted twice)	
	counter				

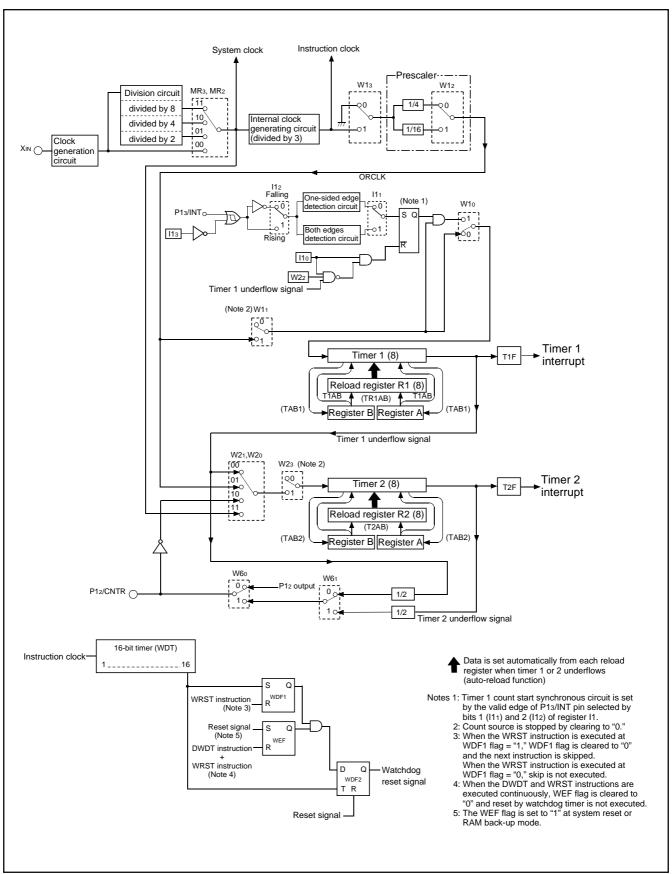


Fig. 22 Timers structure

Table 10 Timer control registers

Timer control register W1		at reset : 00002		at RAM back-up : 00002	R/W	
W13	Prescaler control bit	0	Stop (state initialized)			
VVIS	Frescaler control bit	1	Operating	Operating		
W12	Draggalar dividing ratio calcution hit	0	Instruction clock divided by 4			
VV 12	Prescaler dividing ratio selection bit	1	Instruction clock divided by 16			
W11	Timer 1 control bit	0	Stop (state retained)			
VVII		1	Operating			
W10	Timer 1 count start synchronous circuit	0	Count start synchronous circuit not selected			
	control bit	1	Count start synchro	onous circuit selected		

	Timer control register W2			reset : 00002	at RAM back-up : state retained	R/W
W23	Timer 2 control bit	()	Stop (state retained)		
VV23	Timer 2 control bit		1	Operating		
\M/2a	W22 Timer 1 count auto-stop circuit selection bit (Note 2))	Count auto-stop circuit not selected		
V V Z Z			1 Count auto-stop circuit selected			
		W21 W		Count source		
W21			0	Timer 1 underflow signal		
	Timer 2 count source selection bits	0	1	Prescaler output (C	Prescaler output (ORCLK)	
W20	Timer 2 count source selection bits		0	CNTR input		
			1	System clock		

Timer control register W6		at reset : 00002		at RAM back-up : state retained	R/W	
W63	W63 Not used		This bit has no function, but read/write is enabled.			
	Not used	1	This bit has no ran	This bit has no function, but read/write is enabled.		
W62	Not used	0	This bit has no function, but read/write is enabled.			
1 *****		1	This bit has no function, but read/write is enabled.			
W61	CNTR output selection bit	0	Timer 1 underflow signal divided by 2 output			
VVOI		1	Timer 2 underflow signal divided by 2 output			
W60	P12/CNTR function selection bit	0	P12(I/O)/CNTR input (Note 3)			
VV00		1	P12 (input)/CNTR input/output (Note 3)			

Notes 1: "R" represents read enabled, and "W" represents write enabled.

- 2: This function is valid only when the timer 1 count start synchronization circuit is selected.
- 3: CNTR input is valid only when CNTR input is selected as the timer 2 count source.

(1) Timer control registers

• Timer control register W1

Register W1 controls the count operation of timer 1, the selection of count start synchronous circuit, and the frequency dividing ratio and count operation of prescaler. Set the contents of this register through register A with the TW1A instruction. The TAW1 instruction can be used to transfer the contents of register W1 to register A.

• Timer control register W2

Register W2 controls the selection of timer 1 count auto-stop circuit, and the count operation and count source of timer 2. Set the contents of this register through register A with the TW2A instruction. The TAW2 instruction can be used to transfer the contents of register W2 to register A.

• Timer control register W6

Register W6 controls the P12/CNTR pin function and the selection of CNTR output. Set the contents of this register through register A with the TW6A instruction. The TAW6 instruction can be used to transfer the contents of register W6 to register A..

(2) Prescaler

Prescaler is a frequency divider. Its frequency dividing ratio can be selected. The count source of prescaler is the instruction clock. Use the bit 2 of register W1 to select the prescaler dividing ratio and the bit 3 to start and stop its operation. Prescaler is initialized, and the output signal (ORCLK) stops when the bit 3 of register W1 is cleared to "0."

(3) Timer 1 (interrupt function)

Timer 1 is an 8-bit binary down counter with the timer 1 reload register (R1). Data can be set simultaneously in timer 1 and the reload register (R1) with the T1AB instruction. Stop counting and then execute the T1AB instruction to set data to timer 1. Data can be written to reload register (R1) with the TR1AB instruction.

When writing data to reload register R1 with the TR1AB instruction, the downcount after the underflow is started from the setting value of reload register R1.

Timer 1 starts counting after the following process;

- ① set data in timer 1, and
- 2 set the bit 1 of register W1 to "1."

However, INT pin input can be used as the start trigger for timer 1 count operation by setting the bit 0 of register W1 to "1."

Also, in this time, the auto-stop function by timer 1 underflow can be performed by setting the bit 2 of register W2 to "1."

When a value set is n, timer 1 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 interrupt request flag (T1F) is set to "1," new data is loaded from reload register R1, and count continues (auto-reload function).

Data can be read from timer 1 with the TAB1 instruction. When reading the data, stop the counter and then execute the TAB1 instruction.

(4) Timer 2 (interrupt function)

Timer 2 is an 8-bit binary down counter with the timer 2 reload register (R2). Data can be set simultaneously in timer 2 and the reload register (R2) with the T2AB instruction. Stop counting and then execute the T2AB instruction to set data to timer 2.

Timer 2 starts counting after the following process;

- 1) set data in timer 2,
- ② select the count source with the bits 0 and 1 of register W2, and ③ set the bit 3 of register W2 to "1."

When a value set is n, timer 2 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 interrupt request flag (T2F) is set to "1," new data is loaded from reload register R2, and count continues (auto-reload function).

Data can be read from timer 2 with the TAB2 instruction. When reading the data, stop the counter and then execute the TAB2 instruction.

(5) Timer interrupt request flags (T1F, T2F)

Each timer interrupt request flag is set to "1" when each timer underflows. The state of these flags can be examined with the skip instructions (SNZT1, SNZT2).

Use the interrupt control register V1 to select an interrupt or a skip instruction.

An interrupt request flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with a skip instruction.

(6) Count start synchronization circuit (timer 1)

Timer 1 has the count start synchronous circuit which synchronizes the input of INT pin, and can start the timer count operation.

Timer 1 count start synchronous circuit function is selected by setting the bit 0 of register W1 to "1." The control by INT pin input can be performed by setting the bit 0 of register I1 to "1."

The count start synchronous circuit is set by level change ("H"→"L" or "L"→"H") of INT pin input. This valid waveform is selected by bits 1 (I11) and 2 (I12) of register I1 as follows;

- I11 = "0": Synchronized with one-sided edge (falling or rising)
- I11 = "1": Synchronized with both edges (both falling and rising)
 When register I11="0" (synchronized with the one-sided edge), the rising or falling waveform can be selected by the bit 2 of register I1;
- I12 = "0": Falling waveform
- I12 = "1": Rising waveform

When timer 1 count start synchronous circuit is used, the count start synchronous circuit is set, the count source is input to each timer by inputting valid waveform to INT pin. Once set, the count start synchronous circuit is cleared by clearing the bit I10 to "0" or reset.

However, when the count auto-stop circuit is selected (register W22 = "1"), the count start synchronous circuit is cleared (auto-stop) at the timer 1 underflow.

(7) Count auto-stop circuit (timer 1)

Timer 1 has the count auto-stop circuit which is used to stop timer 1 automatically by the timer 1 underflow when the count start synchronous circuit is used.

The count auto-stop cicuit is valid by setting the bit 2 of register W2 to "1". It is cleared by the timer 1 underflow and the count source to timer 1 is stopped.

This function is valid only when the timer 1 count start synchronous circuit is selected.

(8) Timer input/output pin (P12/CNTR pin)

CNTR pin is used to input the timer 2 count source and output the timer 1 and timer 2 underflow signal divided by 2.

The P12/CNTR pin function can be selected by bit 0 of register W6. The CNTR output signal can be selected by bit 1 of register W6. When the CNTR input is selected for timer 2 count source, timer 2 counts the falling waveform of CNTR input.

(9) Precautions

Note the following for the use of timers.

- Prescaler
- Stop the prescaler operation to change its frequency dividing ratio
- · Count source
 - Stop timer 1 or 2 counting to change its count source.
- Reading the count value
 Stop timer 1 or 2 counting and then execute the TAB1 or TAB2 instruction to read its data.
- Writing to the timer
 Stop timer 1 or 2 counting and then execute the T1AB or T2AB instruction to write its data.
- Writing to reload register R1
 When writing data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.

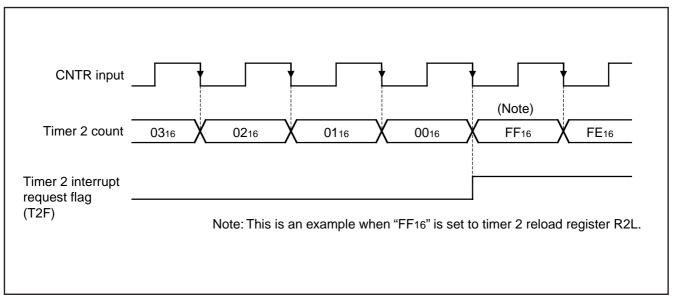


Fig. 23 Count timing diagram at CNTR input

- Timer 1 and timer 2 count start timing and count time when operation starts
 - Count starts from the first rising edge of the count source (2) after timer 1 and timer 2 operations start (1).
 - Time to first underflow (3) is shorter (for up to 1 period of the count source) than time among next underflow (4) by the timing to start the timer and count source operations after count starts. When selecting CNTR input as the count source of timer 2, timer 2 operates synchronizing with the falling edge of CNTR input.

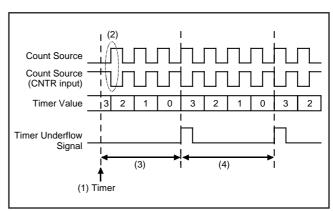


Fig. 24 Timer count start timing and count time when operation starts (T1, T2)

1-30

WATCHDOG TIMER

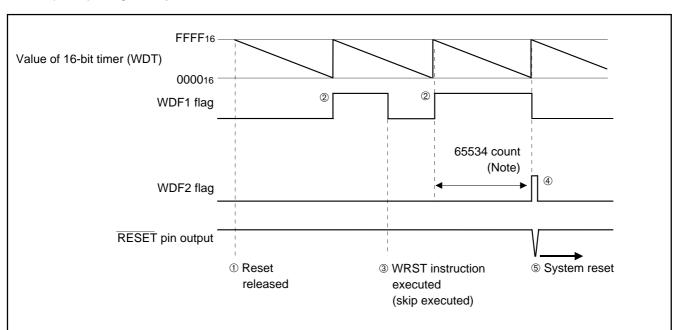
Watchdog timer provides a method to reset the system when a program run-away occurs. Watchdog timer consists of timer WDT(16-bit binary counter), watchdog timer enable flag (WEF), and watchdog timer flags (WDF1, WDF2).

The timer WDT downcounts the instruction clocks as the count source from "FFFF16" after system is released from reset.

After the count is started, when the timer WDT underflow occurs (after the count value of timer WDT reaches "FFFF16," the next count pulse is input), the WDF1 flag is set to "1."

If the WRST instruction is never executed until the timer WDT underflow occurs (until timer WDT counts 65534), WDF2 flag is set to "1," and the $\overline{\text{RESET}}$ pin outputs "L" level to reset the microcomputer.

Execute the WRST instruction at each period of 65534 machine cycle or less by software when using watchdog timer to keep the microcomputer operating normally.


When the WEF flag is set to "1" after system is released from reset, the watchdog timer function is valid.

When the DWDT instruction and the WRST instruction are executed continuously, the WEF flag is cleared to "0" and the watchdog timer function is invalid.

The WEF flag is set to "1" at system reset or RAM back-up mode. The WRST instruction has the skip function. When the WRST instruction is executed while the WDF1 flag is "1", the WDF1 flag is cleared to "0" and the next instruction is skipped.

When the WRST instruction is executed while the WDF1 flag is "0", the next instruction is not skipped.

The skip function of the WRST instruction can be used even when the watchdog timer function is invalid.

- ① After system is released from reset (= after program is started), timer WDT starts count down.
- ② When timer WDT underflow occurs, WDF1 flag is set to "1."
- ③ When the WRST instruction is executed, WDF1 flag is cleared to "0," the next instruction is skipped.
- When timer WDT underflow occurs while WDF1 flag is "1," WDF2 flag is set to "1" and the watchdog reset signal is output.
- ⑤ The output transistor of RESET pin is turned "ON" by the watchdog reset signal and system reset is executed.

Note: The number of count is equal to the number of machine cycle because the count source of watchdog timer is the instruction clock.

Fig. 25 Watchdog timer function

When the watchdog timer is used, clear the WDF1 flag at the period of 65534 machine cycles or less with the WRST instruction. When the watchdog timer is not used, execute the DWDT instruction and the WRST instruction continuously (refer to Figure 26). The watchdog timer is not stopped with only the DWDT instruction. The contents of WDF1 flag and timer WDT are initialized at the RAM back-up mode.

When using the watchdog timer and the RAM back-up mode, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the RAM back-up state (refer to Figure 27). The watchdog timer function is valid after system is returned from the RAM back-up. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the RAM back-up, and stop the watchdog timer function.

```
WRST; WDF1 flag cleared

DI
DWDT; Watchdog timer function enabled/disabled
WRST; WEF and WDF1 flags cleared
```

Fig. 26 Program example to start/stop watchdog timer

```
WRST; WDF1 flag cleared
NOP
DI; Interrupt disabled
EPOF; POF instruction enabled
POF

↓
Oscillation stop (RAM back-up mode)
```

Fig. 27 Program example to enter the RAM back-up mode when using the watchdog timer

A/D CONVERTER

The 4502 Group has a built-in A/D conversion circuit that performs conversion by 10-bit successive comparison method. Table 11 shows the characteristics of this A/D converter. This A/D converter can also be used as an 8-bit comparator to compare analog voltages input from the analog input pin with preset values.

Table 11 A/D converter characteristics

Parameter	Characteristics
Conversion format	Successive comparison method
Resolution	10 bits
Relative accuracy	Linearity error: ±2LSB
	Differential non-linearity error: ±0.9LSB
Conversion speed	46.5 μ s (High-speed mode at 4.0 MHz oscillation frequency)
Analog input pin	4

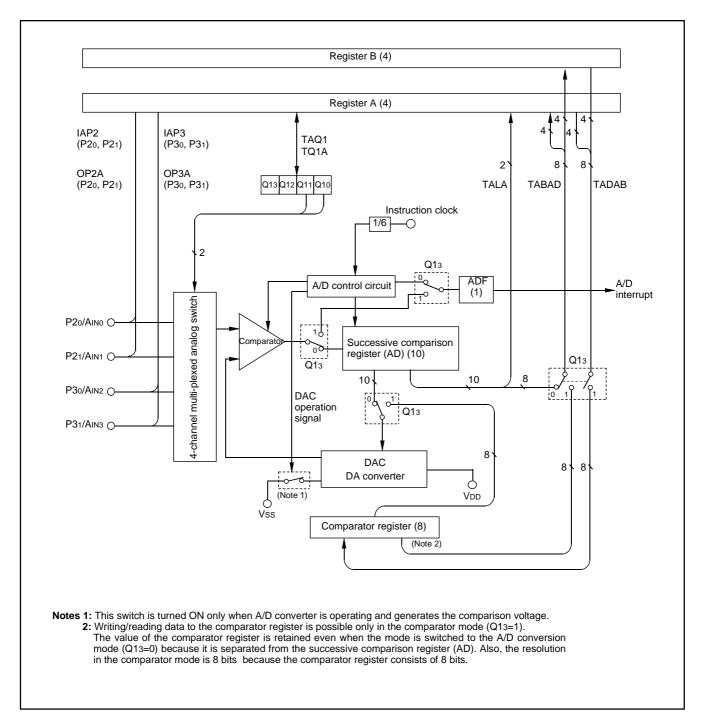


Fig. 28 A/D conversion circuit structure

Table	12	A/D	control	registers
-------	----	-----	---------	-----------

	A/D control register Q1		at reset : 00002		at RAM back-up : state retained R/W
Q13	A/D an arction made acleration bit)	A/D conversion mod	de
Q13	A/D operation mode selection bit	1		Comparator mode	
Q12	Not used	() I	This bit has no func	tion, but read/write is enabled.
	Analog input pin selection bits	Q11	Q10		Selected pins
Q11		0	0	AIN0	
		0	1	AIN1	
Q10			0	AIN2	
		1	1	AIN3	

Note: "R" represents read enabled, and "W" represents write enabled.

(1) Operating at A/D conversion mode

The A/D conversion mode is set by setting the bit 3 of register Q1 to "0."

(2) Successive comparison register AD

Register AD stores the A/D conversion result of an analog input in 10-bit digital data format. The contents of the high-order 8 bits of this register can be stored in register B and register A with the TABAD instruction. The contents of the low-order 2 bits of this register can be stored into the high-order 2 bits of register A with the TALA instruction. However, do not execute these instructions during A/D conversion.

When the contents of register AD is n, the logic value of the comparison voltage V_{ref} generated from the built-in DA converter can be obtained with the reference voltage V_{DD} by the following formula:

Logic value of comparison voltage Vref

$$V_{ref} = \frac{V_{DD}}{1024} \times n$$

n: The value of register AD (n = 0 to 1023)

(3) A/D conversion completion flag (ADF)

A/D conversion completion flag (ADF) is set to "1" when A/D conversion completes. The state of ADF flag can be examined with the skip instruction (SNZAD). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The ADF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

(4) A/D conversion start instruction (ADST)

A/D conversion starts when the ADST instruction is executed. The conversion result is automatically stored in the register AD.

(5) A/D control register Q1

Register Q1 is used to select the operation mode and one of analog input pins.

(6) Operation description

A/D conversion is started with the A/D conversion start instruction (ADST). The internal operation during A/D conversion is as follows:

- ① When the A/D conversion starts, the register AD is cleared to "00016."
- ② Next, the topmost bit of the register AD is set to "1," and the comparison voltage Vref is compared with the analog input voltage VIN.
- ③ When the comparison result is V_{ref} < V_{IN}, the topmost bit of the register AD remains set to "1." When the comparison result is V_{ref} > V_{IN}, it is cleared to "0."

The 4502 Group repeats this operation to the lowermost bit of the register AD to convert an analog value to a digital value. A/D conversion stops after 62 machine cycles (46.5 μ s when f(XIN) = 4.0 MHz in high-speed mode) from the start, and the conversion result is stored in the register AD. An A/D interrupt activated condition is satisfied and the ADF flag is set to "1" as soon as A/D conversion completes (Figure 29).

At starting conversion	Change of successive comparison register AD	Comparison voltage (Vref) value
1st comparison	1 0 0 0 0 0	VDD 2
2nd comparison	*1 1 0 0 0 0	VDD ± VDD 2 ± 4
3rd comparison	*1 *2 1 0 0 0 -	$\frac{VDD}{2} \ \pm \ \frac{VDD}{4} \ \pm \ \frac{VDD}{8}$
After 10th comparison completes	A/D conversion result *1	VDD ± · · · ± VDD 1024

Table 13 Change of successive comparison register AD during A/D conversion

*1: 1st comparison result
*2: 2nd comparison result
*3: 3rd comparison result
*8: 8th comparison result
*9: 9th comparison result
*A: 10th comparison result

(7) A/D conversion timing chart

Figure 29 shows the A/D conversion timing chart.

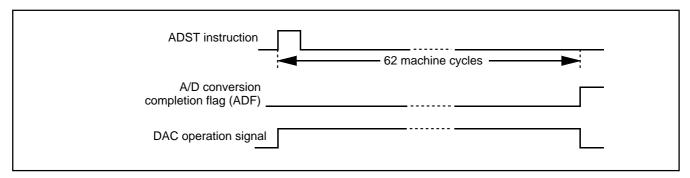


Fig. 29 A/D conversion timing chart

(8) How to use A/D conversion

How to use A/D conversion is explained using as example in which the analog input from P21/AIN1 pin is A/D converted, and the high-order 4 bits of the converted data are stored in address M(Z, X, Y) = (0, 0, 0), the middle-order 4 bits in address M(Z, X, Y) = (0, 0, 1), and the low-order 2 bits in address M(Z, X, Y) = (0, 0, 2) of RAM. The A/D interrupt is not used in this example.

- ① Select the AIN1 pin function and A/D conversion mode with the register Q1 (refer to Figure 30).
- ② Execute the ADST instruction and start A/D conversion.
- ③ Examine the state of ADF flag with the SNZAD instruction to determine the end of A/D conversion.
- Transfer the low-order 2 bits of converted data to the high-order 2 bits of register A (TALA instruction).
- ® Transfer the high-order 8 bits of converted data to registers A and B (TABAD instruction).

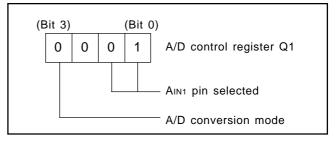


Fig. 30 Setting registers

(9) Operation at comparator mode

The A/D converter is set to comparator mode by setting bit 3 of the register Q1 to "1."

Below, the operation at comparator mode is described.

(10) Comparator register

In comparator mode, the built-in DA comparator is connected to the 8-bit comparator register as a register for setting comparison voltages. The contents of register B is stored in the high-order 4 bits of the comparator register and the contents of register A is stored in the low-order 4 bits of the comparator register with the TADAB instruction.

When changing from A/D conversion mode to comparator mode, the result of A/D conversion (register AD) is undefined.

However, because the comparator register is separated from register AD, the value is retained even when changing from comparator mode to A/D conversion mode. Note that the comparator register can be written and read at only comparator mode.

If the value in the comparator register is n, the logic value of comparison voltage V_{ref} generated by the built-in DA converter can be determined from the following formula:

Logic value of comparison voltage
$$V_{ref}$$

$$V_{ref} = \frac{V_{DD}}{256} \times n$$
n: The value of register AD (n = 0 to 255)

(11) Comparison result store flag (ADF)

In comparator mode, the ADF flag, which shows completion of A/D conversion, stores the results of comparing the analog input voltage with the comparison voltage. When the analog input voltage is lower than the comparison voltage, the ADF flag is set to "1." The state of ADF flag can be examined with the skip instruction (SNZAD). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The ADF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

(12) Comparator operation start instruction (ADST instruction)

In comparator mode, executing ADST starts the comparator operating.

The comparator stops 8 machine cycles after it has started (6 μ s at f(XIN) = 4.0 MHz in high-speed mode). When the analog input voltage is lower than the comparison voltage, the ADF flag is set to "1."

(13) Notes for the use of A/D conversion 1

Note the following when using the analog input pins also for ports P2 and P3 functions:

· Selection of analog input pins

Even when P20/AIN0, P21/AIN1, P30/AIN2, P31/AIN3 are set to pins for analog input, they continue to function as ports P2 and P3 input/output. Accordingly, when any of them are used as I/O port and others are used as analog input pins, make sure to set the outputs of pins that are set for analog input to "1." Also, the port input function of the pin functions as an analog input is undefined.

· TALA instruction

When the TALA instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, simultaneously, the low-order 2 bits of register A is "0."

(14) Notes for the use of A/D conversion 2

Do not change the operating mode (both A/D conversion mode and comparator mode) of A/D converter with the bit 3 of register Q1 while the A/D converter is operating.

When the operating mode of A/D converter is changed from the comparator mode to A/D conversion mode with the bit 3 of register Q1, note the following:

- Clear the bit 2 of register V2 to "0" to change the operating mode of the A/D converter from the comparator mode to A/D conversion mode with the bit 3 of register Q1.
- The A/D conversion completion flag (ADF) may be set when the
 operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a
 value to the bit 3 of register Q1, and execute the SNZAD instruction to clear the ADF flag.

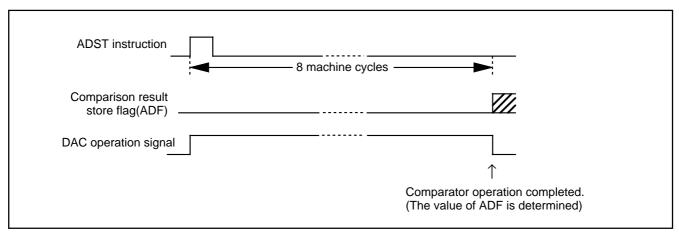


Fig. 31 Comparator operation timing chart

(15) Definition of A/D converter accuracy

The A/D conversion accuracy is defined below (refer to Figure 32).

- · Relative accuracy
 - ① Zero transition voltage (VoT)

This means an analog input voltage when the actual A/D conversion output data changes from "0" to "1."

② Full-scale transition voltage (VFST)

This means an analog input voltage when the actual A/D conversion output data changes from "1023" to "1022."

3 Linearity error

This means a deviation from the line between VoT and VFST of a converted value between VoT and VFST.

Differential non-linearity error

This means a deviation from the input potential difference required to change a converter value between VoT and VFST by 1 LSB at the relative accuracy.

Absolute accuracy

This means a deviation from the ideal characteristics between 0 to VDD of actual A/D conversion characteristics.

Vn: Analog input voltage when the output data changes from "n" to "n+1" (n = 0 to 1022)

• 1LSB at relative accuracy
$$\rightarrow \frac{VFST-V0T}{1022}$$
 (V)

• 1LSB at absolute accuracy
$$\rightarrow \frac{VDD}{1024}$$
 (V)

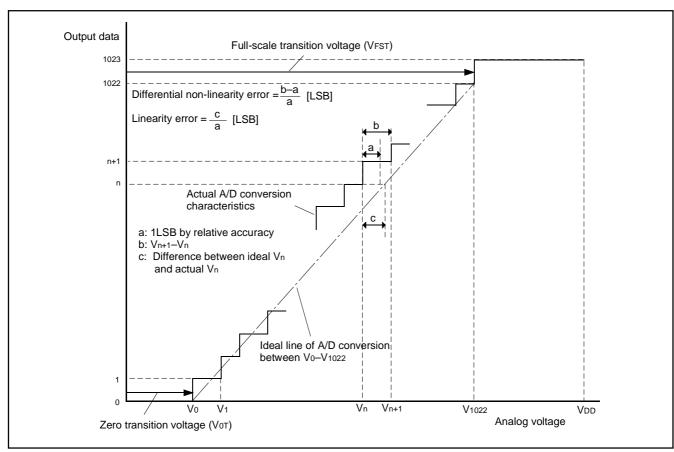


Fig. 32 Definition of A/D conversion accuracy

RESET FUNCTION

System reset is performed by applying "L" level to RESET pin for 1 machine cycle or more when the following condition is satisfied; the value of supply voltage is the minimum value or more of the recommended operating conditions.

Then when "H" level is applied to $\overline{\text{RESET}}$ pin, software starts from address 0 in page 0.

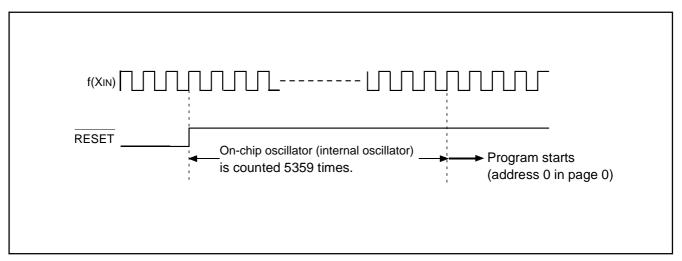


Fig. 33 Reset release timing

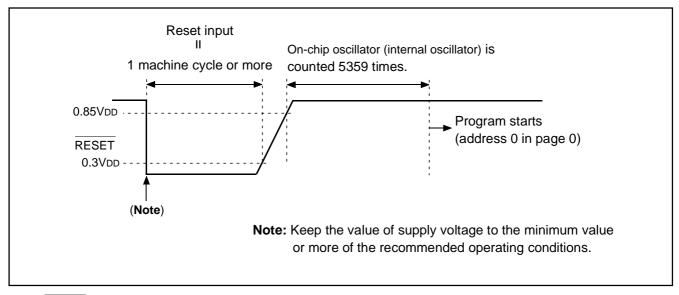


Fig. 34 RESET pin input waveform and reset operation

(1) Power-on reset

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V to 2.0 V must be set to 100 μ s or less. If the rising

time exceeds 100 μ s, connect a capacitor between the $\overline{\text{RESET}}$ pin and Vss at the shortest distance, and input "L" level to $\overline{\text{RESET}}$ pin until the value of supply voltage reaches the minimum operating voltage.

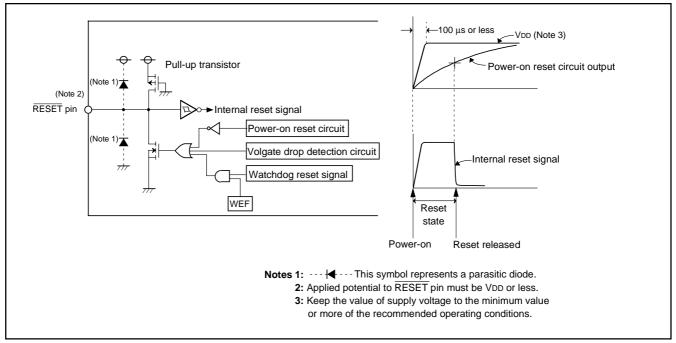


Fig. 35 Structure of reset pin and its peripherals, and power-on reset operation

Table 14 Port state at reset

Name	Function	State
Do, D1, D4, D5	Do, D1, D4, D5	High-impedance (Note 1)
D2/C, D3/K	D2, D3	High-impedance (Notes 1, 2)
P00, P01, P02, P03	P00-P03	High-impedance (Notes 1, 2)
P10, P11, P12/CNTR, P13/INT	P10-P13	High-impedance (Notes 1, 2)
P20/AIN0, P21/AIN1	P20, P21	High-impedance (Notes 1, 2)
P30/AIN2, P31/AIN3	P30, P31	High-impedance (Note 1)

Notes 1: Output latch is set to "1."

2: Pull-up transistor is turned OFF.

(2) Internal state at reset

Figure 36 shows internal state at reset (they are the same after system is released from reset). The contents of timers, registers, flags and RAM except shown in Figure 36 are undefined, so set the initial value to them.

Program counter (PC)	0 0 0 0 0 0 0 0 0 0 0 0 0
Address 0 in page 0 is set to program counter.	
Interrupt enable flag (INTE)	0 (Interrupt disabled)
Power down flag (P)	
External 0 interrupt request flag (EXF0)	0
Interrupt control register V1	
Interrupt control register V2	
Interrupt control register I1	0000
Timer 1 interrupt request flag (T1F)	
Timer 2 interrupt request flag (T2F)	
Watchdog timer flags (WDF1, WDF2)	0
Watchdog timer enable flag (WEF)	
Timer control register W1	
Timer control register W2	
Timer control register W6	
Clock control register MR	
Key-on wakeup control register K0	
Key-on wakeup control register K1	
Key-on wakeup control register K2	
Pull-up control register PU0	0000
Pull-up control register PU1	0 0 0 0
Pull-up control register PU2	0000
A/D conversion completion flag (ADF)	
A/D control register Q1	0000
Carry flag (CY)	0
• Register A	
Register B	0 0 0 0
Register D	X X X
Register E	
• Register X	0000
Register Y	0 0 0 0
Register Z	XX
Stack pointer (SP)	
Oscillation clock On-	chip oscillator (operating)
Ceramic resonator circuit	Operating

Fig. 36 Internal state at reset

VOLTAGE DROP DETECTION CIRCUIT

The built-in voltage drop detection circuit is designed to detect a drop in voltage and to reset the microcomputer if the supply voltage drops below a set value.

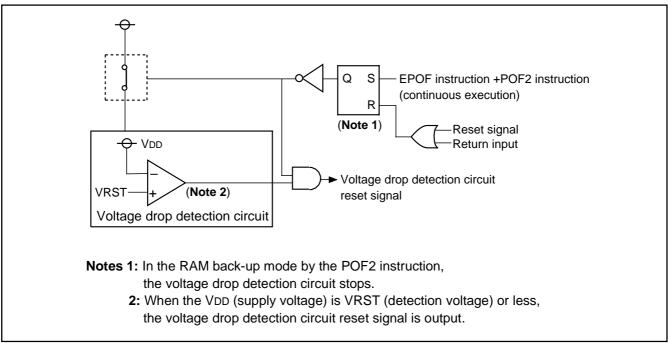


Fig. 37 Voltage drop detection circuit

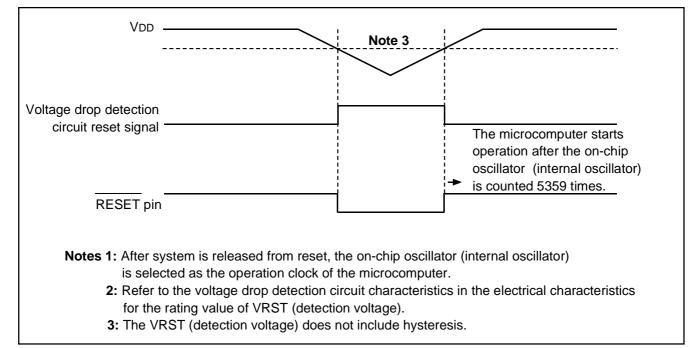


Fig. 38 Voltage drop detection circuit operation waveform example

RAM BACK-UP MODE

The 4502 Group has the RAM back-up mode.

When the POF or POF2 instruction is executed continuously after the EPOF instruction, system enters the RAM back-up state.

The POF or POF2 instruction is equal to the NOP instruction when the EPOF instruction is not executed before the POF or POF2 instruction.

As oscillation stops retaining RAM, the function of reset circuit and states at RAM back-up mode, current dissipation can be reduced without losing the contents of RAM.

In the RAM back-up mode by the POF instruction, system enters the RAM back-up mode and the voltage drop detection cicuit keeps operating.

In the RAM back-up mode by the POF2 instruction, all internal periperal functions stop.

Table 15 shows the function and states retained at RAM back-up. Figure 39 shows the state transition.

(1) Identification of the start condition

Warm start (return from the RAM back-up state) or cold start (return from the normal reset state) can be identified by examining the state of the power down flag (P) with the SNZP instruction.

(2) Warm start condition

When the external wakeup signal is input after the system enters the RAM back-up state by executing the EPOF instruction and POF or POF2 instruction continuously, the CPU starts executing the program from address 0 in page 0. In this case, the P flag is "1."

(3) Cold start condition

The CPU starts executing the program from address 0 in page 0 when:

- reset pulse is input to RESET pin, or
- reset by watchdog timer is performed, or
- voltage drop detection circuit is detected by the voltage drop In this case, the P flag is "0."

Table 15 Functions and states retained at RAM back-up

Forestina	RAM b	ack-up
Function	POF	POF2
Program counter (PC), registers A, B, carry flag (CY), stack pointer (SP) (Note 2)	×	×
Contents of RAM	0	0
Port level	(Note 6)	(Note 6)
Selected oscillation circuit	0	0
Timer control register W1	X	X
Timer control registers W2, W6	0	0
Clock control register MR	X	X
Interrupt control registers V1, V2	X	X
Interrupt control register I1	0	0
Timer 1 function	×	×
Timer 2 function	(Note 3)	(Note 3)
A/D conversion function	X	X
Voltage drop detection circuit	O (Note 5)	×
A/D control register Q1	0	0
Pull-up control registers PU0 to PU2	0	0
Key-on wakeup control registers K0 to K2	0	0
External 0 interrupt request flag (EXF0)	X	X
Timer 1 interrupt request flag (T1F)	×	X
Timer 2 interrupt request flag (T2F)	(Note 3)	(Note 3)
Watchdog timer flags (WDF1)	X (Note 4)	X (Note 4)
Watchdog timer enable flag (WEF)	X	X
16-bit timer (WDT)	X (Note 4)	X (Note 4)
A/D conversion completion flag (ADF)	×	×
Interrupt enable flag (INTE)	×	×

Notes 1: "O" represents that the function can be retained, and "X" represents that the function is initialized.

Registers and flags other than the above are undefined at RAM back-up, and set an initial value after returning.

- 2: The stack pointer (SP) points the level of the stack register and is initialized to "7" at RAM back-up.
- 3: The state of the timer is undefined.
- 4: Initialize the watchdog timer flag WDF1 with the WRST instruction, and then execute the POF or POF2 instruction.
- 5: This function is operating in the RAM back-up mode. When the voltage drop is detected, system reset occurs.
- 6: As for the D2/C pin, the output latch of port C is set to "1" at the RAM back-up. However, the output latch of port D2 is retained. As for the other ports, their output levels are retained at the RAM back-up.

(4) Return signal

An external wakeup signal is used to return from the RAM back-up mode because the oscillation is stopped. Table 16 shows the return condition for each return source.

(5) Control registers

· Key-on wakeup control register K0

Register K0 controls the port P0 key-on wakeup function. Set the contents of this register through register A with the TK0A instruction. In addition, the TAK0 instruction can be used to transfer the contents of register K0 to register A.

- Key-on wakeup control register K1
 Register K1 controls the port P1 key-on wake
- Register K1 controls the port P1 key-on wakeup function. Set the contents of this register through register A with the TK1A instruction. In addition, the TAK1 instruction can be used to transfer the contents of register K0 to register A.
- Key-on wakeup control register K2
 Register K2 controls the ports P2, D2/C and D3/K key-on wakeup function. Set the contents of this register through register A with the TK2A instruction. In addition, the TAK2 instruction can be used to transfer the contents of register K2 to register A.

- Pull-up control register PU0
 - Register PU0 controls the ON/OFF of the port P0 pull-up transistor. Set the contents of this register through register A with the TPU0A instruction.
- Pull-up control register PU1
 - Register PU1 controls the ON/OFF of the port P1 pull-up transistor. Set the contents of this register through register A with the TPLI1A instruction
- Pull-up control register PU2
 - Register PU2 controls the ON/OFF of the ports P2, D2/C and D3/K pull-up transistor. Set the contents of this register through register A with the TPU2A instruction.
- Interrupt control register I1
 - Register I1 controls the valid waveform of the external 0 interrupt, the input control of INT pin and the return input level. Set the contents of this register through register A with the TI1A instruction. In addition, the TAI1 instruction can be used to transfer the contents of register I1 to register A.

Table 16 Return source and return condition

F	Return source	Return condition	Remarks
	Port P0	Return by an external "L" level in-	The key-on wakeup function can be selected by one port unit. Set the port
signal	Port P1 (Note)	put.	using the key-on wakeup function to "H" level before going into the RAM back-up state.
	Port P2		back up state.
ent	Ports D ₂ /C, D ₃ /K		
wakeup	Port P13/INT	Return by an external "H" level or	Select the return level ("L" level or "H" level) with the bit 2 of register I1 ac-
	(Note)	"L" level input. The return level can be selected with the bit 2	cording to the external state before going into the RAM back-up state.
External		(I12) of register I1.	
Ä		When the return level is input, the EXEO flag is not set	
		EXF0 flag is not set.	

Note: When the bit 3 (K13) of register K1 is "0", the key-on wakeup of the INT pin is valid ("H" or "L" level). It is "1", the key-on wakeup of port P13 is valid ("L" level).

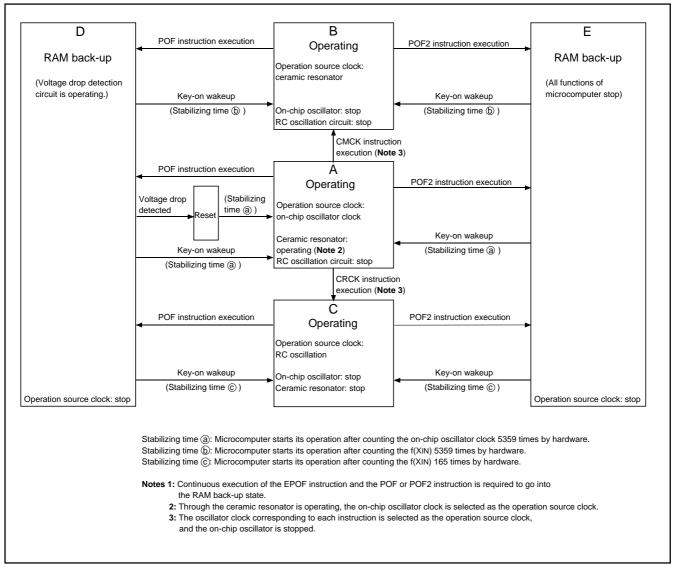


Fig. 39 State transition

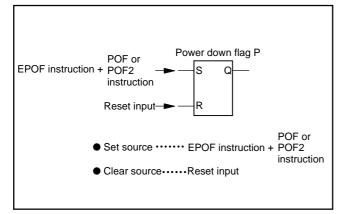


Fig. 40 Set source and clear source of the P flag

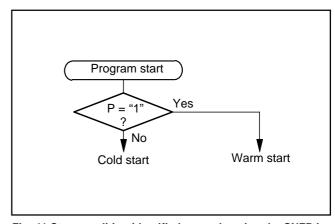


Fig. 41 Start condition identified example using the SNZP instruction

Table 17 Key-on wakeup control register

	Key-on wakeup control register K0		reset: 00002	at RAM back-up : state retained	R/W
K03	Port P03 key-on wakeup	0 Key-on wakeup not us		used	
KU3	control bit	1	Key-on wakeup use	ed	
140-	Port P02 key-on wakeup	0 Key-on wakeup not u		used	
K02	control bit	1	Key-on wakeup use	ed	
140.	Port P01 key-on wakeup	0	Key-on wakeup not	ot used	
K01	control bit	1 Key-on wakeup use		ed	
I/Os	Port P00 key-on wakeup	0 Key-on wakeup not		used	
K0 ₀	control bit	1	Key-on wakeup use	ed	

	Key-on wakeup control register K1		reset : 00002	at RAM back-up : state retained	R/W
V10	Port P13/INT key-on wakeup	0	P13 key-on wakeup	not used/INT pin key-on wakeup used	
K13	control bit	1	P13 key-on wakeup	used/INT pin key-on wakeup not used	
V10	Port P12/CNTR key-on wakeup	0 Key-on wakeup not		t used	
K12	control bit	1	Key-on wakeup use	ed	
1/4 /	Port P11 key-on wakeup	0	Key-on wakeup not	used	
K11	control bit	1 Key-on wakeup used			
K10	Port P1 ₀ key-on wakeup	0 Key-on wakeup not		used	
K 10	control bit	1	Key-on wakeup use	ed	

Key-on wakeup control register K2		at reset : 00002		at RAM back-up : state retained	R/W	
K23	Port D3/K key-on wakeup	0 Key-on wakeup not u		used		
N23	control bit	1	Key-on wakeup use	ed		
K22	Port D ₂ /C key-on wakeup	0 Key-on wakeup not		nt used		
NZ2	control bit	1	Key-on wakeup use	sed		
K21	Port P21/AIN1 key-on wakeup	0	Key-on wakeup not	not used		
N21	control bit	1 Key-on wakeup used		ed		
K20	Port P20/AIN0 key-on wakeup	0 Key-on wakeup no		used		
N20	control bit	1	Key-on wakeup use	ed		

Note: "R" represents read enabled, and "W" represents write enabled.

Table 18 Pull-up control register and interrupt control register

	Pull-up control register PU0		reset : 00002	at RAM back-up : state retained	W
PU03	Port P03 pull-up transistor	0	Pull-up transistor O	FF	
PU03	control bit	1 Pull-up transistor ON		N	
DUO	Port P02 pull-up transistor	0 Pull-up transistor O		OFF	
PU02	control bit	1	Pull-up transistor O	N	
DUO	Port P01 pull-up transistor	0	Pull-up transistor O	FF	
PU01	control bit	1 Pull-up transistor C		N	
DUO	Port P0o pull-up transistor	0 Pull-up transistor C		FF	
PU00	control bit	1	Pull-up transistor O	N	

	Pull-up control register PU1		reset : 00002	at RAM back-up : state retained	W
DUIA	Port P13/INT pull-up transistor	0	Pull-up transistor O	FF	
PU13	control bit	1	Pull-up transistor O	N	
DUIA	Port P12/CNTR pull-up transistor	0 Pull-up transistor OFF		FF	
PU12	control bit	1	Pull-up transistor O	ON	
DUA	Port P11 pull-up transistor	0	Pull-up transistor O	FF	
PU11	control bit	1 Pull-up transistor ON			
DUIA	Port P10 pull-up transistor	0 Pull-up transistor OFF		FF	
PU10	control bit	1	Pull-up transistor O	N	

	Pull-up control register PU2		reset : 00002	at RAM back-up : state retained	W
DUIDo	Port D ₃ /K pull-up transistor	0	Pull-up transistor O	FF	
PU23	control bit	1	Pull-up transistor O	N	
DI IO-	Port D2/C pull-up transistor	0 Pull-up transistor O		FF	
PU22	control bit	1	Pull-up transistor O	N	
PU21	Port P21/AIN1 pull-up transistor	0	Pull-up transistor O	FF	
PU21	control bit	1 Pull-up transistor ON			
DUIDo	Port P20/AIN0 pull-up transistor	0 Pull-up transistor OF		FF	
PU20	control bit	1	Pull-up transistor O	N	

	Interrupt control register I1		reset : 00002	at RAM back-up : state retained	R/W
l13	INT pin input control bit (Note 2)	0	INT pin input disab	pled	
113	in pin input control bit (Note 2)	1	INT pin input enab	led	
		0	,	"L" level of INT pin is recognized wi	th the SNZI0
l12	Interrupt valid waveform for INT pin/		instruction)/"L" level		
	return level selection bit (Note 2)	1	Rising waveform ("H" level of INT pin is recognized wi	th the SNZI0
		·	instruction)/"H" level		
l1 ₁	INT pin edge detection circuit control bit	0	One-sided edge de	One-sided edge detected	
'''	in pin eage detection circuit control bit	1	Both edges detected		
110	INT pin	0 Disabled			
110	timer 1 control enable bit	1	Enabled		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set. Accordingly, clear EXF0 flag with the SNZ0 instruction when the bit 0 (V10) of register V1 to "0". In this time, set the NOP instruction after the SNZ0 instruction, for the case when a skip is performed with the SNZ0 instruction.

CLOCK CONTROL

The clock control circuit consists of the following circuits.

- On-chip oscillator (internal oscillator)
- · Ceramic resonator
- · RC oscillation circuit
- Multi-plexer (clock selection circuit)
- · Frequency divider
- · Internal clock generating circuit

The system clock and the instruction clock are generated as the source clock for operation by these circuits.

Figure 42 shows the structure of the clock control circuit.

The 4502 Group operates by the on-chip oscillator clock (f(RING)) which is the internal oscillator after system is released from reset.

Also, the ceramic resonator or the RC oscillation can be used for the source oscillation (f(XIN)) of the 4502 Group. The CMCK instruction or CRCK instruction is executed to select the ceramic resonator or RC oscillator, respectively.

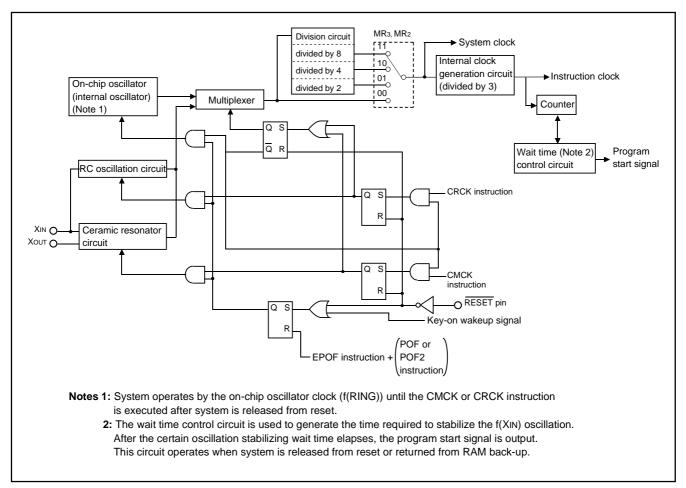


Fig. 42 Clock control circuit structure

(1) Selection of source oscillation (f(XIN))

The ceramic resonator or RC oscillation can be used for the source oscillation of the MCU.

After system is released from reset, the MCU starts operation by the clock output from the on-chip oscillator which is the internal oscillator.

When the ceramic resonator is used, execute the CMCK instruction. When the RC oscillation is used, execute the CRCK instruction. The oscillation circuit by the CMCK or CRCK instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these two instructions is valid. Other oscillation circuit and the on-chip oscillator stop.

Execute the CMCK or the CRCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended). Also, when the CMCK or the CRCK instruction is not executed in program, the MCU operates by the on-chip oscillator.

(2) On-chip oscillator operation

When the MCU operates by the on-chip oscillator as the source oscillation (f(XIN)) without using the ceramic resonator or the RC oscillator, connect XIN pin to Vss and leave XOUT pin open (Figure 44).

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

(3) Ceramic resonator

When the ceramic resonator is used as the source oscillation (f(XIN)), connect the ceramic resonator and the external circuit to pins XIN and XOUT at the shortest distance. Then, execute the CMCK instruction. A feedback resistor is built in between pins XIN and XOUT (Figure 45).

(4) RC oscillation

When the RC oscillation is used as the source oscillation (f(XIN)), connect the XIN pin to the external circuit of resistor R and the capacitor C at the shortest distance and leave XOUT pin open. Then, execute the CRCK instruction (Figure 46).

The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

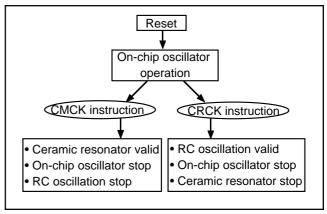


Fig. 43 Switch to ceramic resonance/RC oscillation

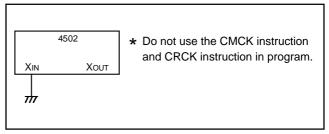


Fig. 44 Handling of XIN and XOUT when operating on-chip oscillator

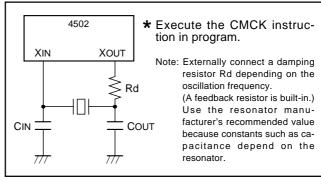


Fig. 45 Ceramic resonator external circuit

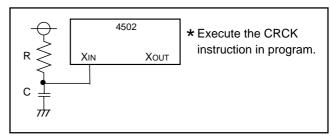


Fig. 46 External RC oscillation circuit

(5) External clock

When the external signal clock is used as the source oscillation (f(XIN)), connect the XIN pin to the clock source and leave XOUT pin open. Then, execute the CMCK instruction (Figure 47).

Be careful that the maximum value of the oscillation frequency when using the external clock differs from the value when using the ceramic resonator (refer to the recommended operating condition). Also, note that the RAM back-up mode (POF and POF2 instructions) cannot be used when using the external clock.

(6) Clock control register MR

Register MR controls system clock. Set the contents of this register through register A with the TMRA instruction. In addition, the TAMR instruction can be used to transfer the contents of register MR to register A.

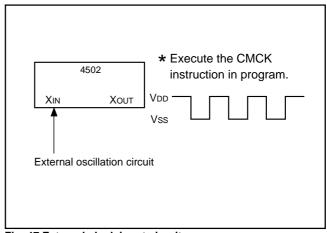


Fig. 47 External clock input circuit

Table 19 Clock control register MR

	Clock control register MR	ock control register MR a		reset : 11002	at RAM back-up : 11002	R/W
			MR2	System clock		
MR3	MR3 System clock selection bits	0	0	f(XIN) (high-speed mode)		
		0	1	f(XIN)/2 (middle-speed mode)		
MR ₂		1	0	f(XIN)/4 (low-speed	mode)	
		1	1	f(XIN)/8 (default mo	de)	
MD4	Not your	()			
IVIET	MR1 Not used		This bit has no function, but read		tion, but read/write is enabled.	
MR ₀	MPo Not wood		0			
IVIAU	Not used	1		This bit has no function, but read/write is enabled.		

Note: "R" represents read enabled, and "W" represents write enabled.

ROM ORDERING METHOD

Please submit the information described below when ordering Mask ROM.

- (1) Mask ROM Order Confirmation Form 1
- (2) Data to be written into mask ROM EPROM (three sets containing the identical data)
- (3) Mark Specification Form 1

*For the mask ROM confirmation and the mark specifications, refer to the "Renesas Technology Corp." Homepage (http://www.renesas.com/en/rom).

LIST OF PRECAUTIONS

Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up:

- connect a bypass capacitor (approx. 0.1 μ F) between pins VDD and Vss at the shortest distance,
- equalize its wiring in width and length, and
- · use relatively thick wire.

In the One Time PROM version, CNVss pin is also used as VPP pin. Accordingly, when using this pin, connect this pin to Vss through a resistor about 5 k Ω (connect this resistor to CNVss/ VPP pin as close as possible).

② Register initial values 1

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

3 Register initial values 2

The initial value of the following registers are undefined at RAM back-up. After system is returned from RAM back-up, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)

Stack registers (SKs) and stack pointer (SP)

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together.

⑤ Prescaler

Stop the prescaler operation to change its frequency dividing ratio.

© Timer count source

Stop timer 1 or 2 counting to change its count source.

Reading the count value

Stop timer 1 or 2 counting and then execute the TAB1 or TAB2 instruction to read its data.

Writing to the timer

Stop timer 1 or 2 counting and then execute the T1AB or T2AB instruction to write its data.

Writing to reload register R1

When writing data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.

Timer 1 and timer 2 count start timing and count time when operation starts

Count starts from the first rising edge of the count source (2) after timer 1 and timer 2 operations start (1).

Time to first underflow (3) is shorter (for up to 1 period of the count source) than time among next underflow (4) by the timing to start the timer and count source operations after count starts. When selecting CNTR input as the count source of timer 2, timer

When selecting CNTR input as the count source of timer 2, timer 2 operates synchronizing with the falling edge of CNTR input.

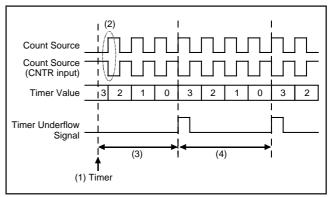


Fig. 48 Timer count start timing and count time when operation starts (T1, T2)

⁽¹⁾Watchdog timer

- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously, and clear the WEF flag to "0" to stop the watchdog timer function.
- The watchdog timer function is valid after system is returned from the RAM back-up. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the RAM back-up, and stop the watchdog timer function.

Multifunction

- The input/output of D2, D3, P12 and P13 can be used even when C, K, CNTR (input) and INT are selected.
- The input of P12 can be used even when CNTR (output) is selected.
- The input/output of P20, P21, P30 and P31 can be used even when AIN0, AIN1, AIN2 and AIN3 are selected.

[®] Program counter

Make sure that the PCH does not specify after the last page of the built-in ROM.

¹⁹POF and POF2 instructions

When the POF or POF2 instruction is executed continuously after the EPOF instruction, system enters the RAM back-up state. Note that system cannot enter the RAM back-up state when executing only the POF or POF2 instruction.

Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction and the POF or POF2 instruction continuously.

® P13/INT pin

Note [1] on bit 3 of register I1

When the input of the INT pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.

Depending on the input state of the P13/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 49^①) and then, change the bit 3 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 49²).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 49³).

```
LA
           : (XXX02)
TV1A
            ; The SNZ0 instruction is valid ..... \ensuremath{\textcircled{1}}
LA
            ; (1XXX2)
TI1A
            ; Control of INT pin input is changed
NOP
            SNZ0
            ; The SNZ0 instruction is executed
            (EXF0 flag cleared)
NOP
            X: these bits are not used here.
```

Fig. 49 External 0 interrupt program example-1

Note [2] on bit 3 of register I1

When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.

When the key-on wakeup function of port P13 is not used (register K13 = "0"), clear bits 2 and 3 of register I1 before system enters to the RAM back-up mode. (refer to Figure 50①).

```
LA 0 ; (00XX2)
TI1A ; Input of INT disabled.......

DI
EPOF
POF ; RAM back-up

X: these bits are not used here.
```

Fig. 50 External 0 interrupt program example-2

Note [3] on bit 2 of register I1

When the interrupt valid waveform of the P13/INT pin is changed with the bit 2 of register I1 in software, be careful about the following notes.

• Depending on the input state of the P13/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 51①) and then, change the bit 2 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 51[®]).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 51®).

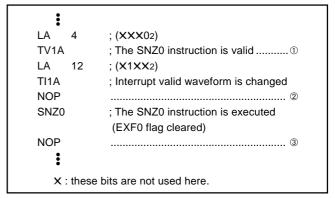


Fig. 51 External 0 interrupt program example-3

® Power-on reset

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V to 2.0 V must be set to 100 μs or less. If the rising time exceeds 100 μs , connect a capacitor between the $\overline{\text{RESET}}$ pin and Vss at the shortest distance, and input "L" level to $\overline{\text{RESET}}$ pin until the value of supply voltage reaches the minimum operating voltage.

© Clock control

Execute the CMCK or the CRCK instruction in the initial setting routine of program (executing it in addres 0 in page 0 is recommended). The oscillation circuit by the CMCK or CRCK instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these two instruction is valid. Other oscillation circuits and the on-chip oscillator stop.

® On-chip oscillator

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

Also, the oscillation stabilize wait time after system is released from reset is generated by the on-chip oscillator clock. When considering the oscillation stabilize wait time after system is released from reset, be careful that the variable frequency of the on-chip oscillator clock.

® External clock

When the external signal clock is used as the source oscillation (f(XIN)), note that the RAM back-up mode (POF and POF2 instructions) cannot be used.

Notes for the use of A/D conversion 1

Note the following when using the analog input pins also for ports P2 and P3 functions:

· Selection of analog input pins

Even when P20/AIN0, P21/AIN1, P30/AIN2, P31/AIN3 are set to pins for analog input, they continue to function as ports P2 and P3 input/output. Accordingly, when any of them are used as I/O port and others are used as analog input pins, make sure to set the outputs of pins that are set for analog input to "1." Also, the port input function of the pin functions as an analog input is undefined.

TALA instruction

When the TALA instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, simultaneously, the low-order 2 bits of register A is "0."

10 Notes for the use of A/D conversion 2

Do not change the operating mode (both A/D conversion mode and comparator mode) of A/D converter with the bit 3 of register Q1 while the A/D converter is operating.

When the operating mode of A/D converter is changed from the comparator mode to A/D conversion mode with the bit 3 of register Q1, note the following;

- Clear the bit 2 of register V2 to "0" (refer to Figure 52①) to change the operating mode of the A/D converter from the comparator mode to A/D conversion mode with the bit 3 of register Q1.
- The A/D conversion completion flag (ADF) may be set when the operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a value to the bit 3 of register Q1, and execute the SNZAD instruction to clear the ADF flag.

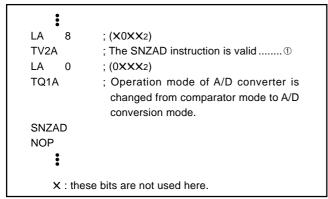


Fig. 52 A/D conversion interrupt program example

® Notes for the use of A/D conversion 3

Each analog input pin is equipped with a capacitor which is used to compare the analog voltage. Accordingly, when the analog voltage is input from the circuit with high-impedance and, charge/discharge noise is generated and the sufficient A/D accuracy may not be obtained. Therefore, reduce the impedance or, connect a capacitor (0.01 μF to 1 μF) to analog input pins (Figure 53). When the overvoltage applied to the A/D conversion circuit may occur, connect an external circuit in order to keep the voltage within the rated range as shown the Figure 54. In addition, test the application products sufficiently.

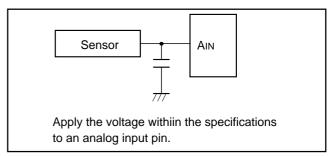


Fig. 53 Analog input external circuit example-1

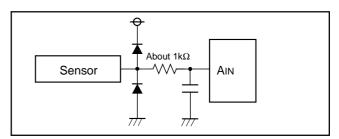


Fig. 54 Analog input external circuit example-2

© Electric Characteristic Differences Between Mask ROM and One Time PROM Version MCU

There are differences in electric characteristics, operation margin, noise immunity, and noise radiation between Mask ROM and One Time PROM version MCUs due to the difference in the manufacturing processes.

When manufacturing an application system with the One time PROM version and then switching to use of the Mask ROM version, please perform sufficient evaluations for the commercial samples of the Mask ROM version.

Note on Power Source Voltage

When the power source voltage value of a microcomputer is less than the value which is indicated as the recommended operating conditions, the microcomputer does not operate normally and may perform unstable operation.

In a system where the power source voltage drops slowly when the power source voltage drops or the power supply is turned off, reset a microcomputer when the supply voltage is less than the recommended operating conditions and design a system not to cause errors to the system by this unstable operation.

CONTROL REGISTERS

	Interrupt control register V1		reset : 00002	at RAM back-up : 00002	R/W
\/10	V13 Timer 2 interrupt enable bit		Interrupt disabled (SNZT2 instruction is valid)		
V 13			Interrupt enabled (SNZT2 instruction is invalid) (Note 2)		
V12	V12 Timer 1 interrupt enable bit		Interrupt disabled (SNZT1 instruction is valid)		
V 12	Timer Timerrupt enable bit	1	Interrupt enabled (SNZT1 instruction is invalid) (Note 2)		
\///	Not upod	0	This bit has no function, but read/write is enabled.		
V 11	V11 Not used		This bit has no function, but read/write is enabled.		
V10	V/4 . External 0 interrupt anable bit		Interrupt disabled (SNZ0 instruction is valid)		
V 10	External 0 interrupt enable bit	1	Interrupt enabled (SNZ0 instruction is invalid) (Note 2)		

	Interrupt control register V2		reset : 00002	at RAM back-up : 00002	R/W
\/Oo	V23 Not used		T1: 191		
V23			This bit has no function, but read/write is enabled.		
\/Oc	V22 A/D interrupt enable bit		Interrupt disabled (SNZAD instruction is valid)		
V22	A/D interrupt enable bit	1	Interrupt enabled (SNZAD instruction is invalid) (Note 2)		
V/24	Not used	0	This bit has no function, but read/write is enabled.		
V Z 1	V21 Not used		This bit has no function, but read/write is chabled.		
\/O ₀	V20 Not used		This bit has no function, but read/write is enabled.		
V20	V20 Not used	1	- This bit has no function, but read/write is enabled.		

Interrupt control register I1		at reset : 00002		at RAM back-up : state retained	R/W	
l13	I13 INT pin input control bit (Note 3)		INT pin input disab	led		
113	in pin input control bit (Note 3)	1	INT pin input enab	INT pin input enabled		
	Interrupt valid waveform for INT pin/	0	Falling waveform ("L" level of INT pin is recognized wit	th the SNZI0	
112			instruction)/"L" level			
112	return level selection bit (Note 3)	1	Rising waveform ('H" level of INT pin is recognized wit	h the SNZI0	
			instruction)/"H" lev	el		
l1 ₁	INT pin edge detection circuit control bit	0	One-sided edge de	etected		
111	111 INT pin eage detection circuit control bit 1		Both edges detected			
110	INT pin	0 Disabled				
110	timer 1 control enable bit	1	Enabled			

	Clock control register MR at		reset : 11002	at RAM back-up : 11002	R/W	
			MR2	System clock		
MR3	MR3 System clock selection bits MR2	0	0	f(XIN) (high-speed r	mode)	
		0	1	f(XIN)/2 (middle-speed mode)		
MR ₂		1	0	f(XIN)/4 (low-speed	mode)	
		1	1	f(XIN)/8 (default mo	de)	
MR1	Not used	()			
IVIIX	MR1 Not used			This bit has no function, but read/write is enabled.		
MR ₀	MPo Not used)			
IVIRO	Not used	1		This bit has no function, but read/write is enabled.		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} These instructions are equivalent to the NOP instruction.

^{3:} When the contents of 112 and 113 are changed, the external interrupt request flag EXF0 may be set. Accordingly, clear EXF0 flag with the SNZ0 instruction when the bit 0 (V10) of register V1 to "0". In this time, set the NOP instruction after the SNZ0 instruction, for the case when a skip is performed with the SNZ0 instruction.

	Timer control register W1		reset : 00002	at RAM back-up : 00002	R/W		
\\/12	W13 Prescaler control bit	0	Stop (state initialize	ed)			
VV 13	Trescaler control bit	1	Operating				
\\\\10	W12 Prescaler dividing ratio selection bit	0	Instruction clock divided by 4				
VV 12		1	Instruction clock divided by 16				
W11	Timer 1 control bit	0	Stop (state retained)				
VVIII	Timer i control bit	1	Operating				
\M10	W10 Timer 1 count start synchronous circuit control bit	0	Count start synchronous circuit not selected				
VVIO		1	Count start synchronous circuit selected				

	Timer control register W2		at reset : 00002		at RAM back-up : state retained	R/W	
W23	Timer 2 control bit	C)	Stop (state retaine	d)		
1123	Timer 2 control bit	1		Operating			
W22	Timer 1 count auto-stop circuit selection	0		Count auto-stop circuit not selected			
VVZZ	bit (Note 2)	1	l	Count auto-stop circuit selected			
1110		W21	W20	Count source			
W21		0	0	Timer 1 underflow	signal		
	Timer 2 count source selection bits	0	1	Prescaler output (0	ORCLK)	_	
W20			0	CNTR input			
		1	1	System clock	System clock		

	Timer control register W6		reset : 00002	at RAM back-up : state retained	R/W	
W63	W63 Not used		This bit has no function, but read/write is enabled.			
	1101 4004	1	THIS SIT HAS HE TAIL	onon, but roug, who is shabisu.		
W62	W62 Not used	0	This bit has no function, but read/write is enabled.			
VV02		1	This bit has no function, but read/write is enabled.			
W61	CNTP output coloction bit	0	Timer 1 underflow signal divided by 2 output			
VVOI	CNTR output selection bit	1	Timer 2 underflow	Timer 2 underflow signal divided by 2 output		
W60	WCo D4-/ONTD (continue of lastice bit	0	P12(I/O)/CNTR input (Note 3)			
VV60	P12/CNTR function selection bit	1	P12 (input)/CNTR input/output (Note 3)			

	A/D control register Q1		at	reset : 00002	at RAM back-up : state retained	R/W	
Q13	A/D aparation made selection bit	0		A/D conversion mod	de		
Q13	Q13 A/D operation mode selection bit			Comparator mode			
Q12	Not used	0		This bit has no function, but read/write is enabled.			
		Q11	Q10		Selected pins		
Q11	Analog input pip colection bits	0	0	AIN0			
	Analog input pin selection bits	0	1	AIN1	AIN1		
Q10		1	0	AIN2			
<u> </u>		1	1	AIN3			

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} This function is valid only when the timer 1 count start synchronization circuit is selected.
3: CNTR input is valid only when CNTR input is selected as the timer 2 count source.

Key-on wakeup control register K0		at reset : 00002		at RAM back-up : state retained	R/W		
K03	Port P03 key-on wakeup	0	Key-on wakeup not	used			
K03	control bit	1	Key-on wakeup use	ed			
K02	Port P02 key-on wakeup	0 Key-on wakeup not		t used			
K02	control bit	1	Key-on wakeup use	ed			
KO4	Port P01 key-on wakeup	0	Key-on wakeup not	ot used			
KU1	K01 control bit		Key-on wakeup used				
K00	Port P00 key-on wakeup	0 Key-on wakeu		n wakeup not used			
NO0	control bit	1	Key-on wakeup use	ed			

	Key-on wakeup control register K1		reset : 00002	at RAM back-up : state retained	R/W
K13	Port P13/INT key-on wakeup	0	P13 key-on wakeup	not used/INT pin key-on wakeup used	
K13	control bit	1 P13 key-on wakeup		used/INT pin key-on wakeup not used	
V40	Port P12/CNTR key-on wakeup	0	Key-on wakeup not used		
K12	control bit	1	Key-on wakeup use	ed	
1/14	Port P11 key-on wakeup	0	Key-on wakeup not	used	
NI1	K11 control bit		Key-on wakeup used		
K10	Port P10 key-on wakeup	0	Key-on wakeup not	used	
K10	control bit	1	Key-on wakeup use	ed	

	Key-on wakeup control register K2		reset : 00002	at RAM back-up : state retained	R/W	
K23	Port D3/K key-on wakeup	0	Key-on wakeup not	used		
K23	control bit	1 Key-on wakeup used		ed		
K22	Port D2/C key-on wakeup	0	Key-on wakeup not used			
K22	control bit	1	Key-on wakeup use	ed		
K21	Port P21/AIN1 key-on wakeup	0	Key-on wakeup not	used		
KZ1	control bit	1	Key-on wakeup use	ed		
K20	Port P20/AIN0 key-on wakeup	0 Key-on wakeup no		used		
N20	control bit	1	Key-on wakeup use	ed		

Note: "R" represents read enabled, and "W" represents write enabled.

Pull-up control register PU0		at reset : 00002		at RAM back-up : state retained	W
DLIOs	Port P03 pull-up transistor	0	Pull-up transistor O	FF	
PU03	control bit	1	Pull-up transistor O	N	
DLIOs	Port P02 pull-up transistor	0 Pull-up transistor O		FF	
PU02	control bit	1	Pull-up transistor O	N	
DUIG	Port P01 pull-up transistor	0	Pull-up transistor O	FF	
PU01	control bit	1 Pull-up transistor O		N	
PU00	Port P00 pull-up transistor	0 Pull-up transistor O		FF	
PU00	control bit	1	Pull-up transistor O	N	

	Pull-up control register PU1		reset : 00002	at RAM back-up : state retained	W	
PU13	Port P13/INT pull-up transistor	0	Pull-up transistor O	FF		
PU13	control bit	1	Pull-up transistor O	N		
DUIA	Port P12/CNTR pull-up transistor	0 Pull-up transistor O)FF		
PU12	control bit	1	Pull-up transistor O	ON		
PU11	Port P11 pull-up transistor	0	Pull-up transistor O	OFF		
PUII	control bit	1 Pull-up transistor O		N		
PU10	Port P10 pull-up transistor	0 Pull-up transistor O		FF	•	
PU10	control bit	1	Pull-up transistor O	N		

	Pull-up control register PU2		reset : 00002	at RAM back-up : state retained	W
PU23	Port D3/K pull-up transistor	0	Pull-up transistor O	FF	
PU23	control bit	1	Pull-up transistor O	N	
DI IO-	Port D2/C pull-up transistor	0 Pull-up transistor C)FF	
PU22	control bit	1	Pull-up transistor O	N	
DI IO.	Port P21/AIN1 pull-up transistor	0	Pull-up transistor O	FF	
PU21	control bit	1 Pull-up transistor ON		N	
DUIDo	Port P20/AIN0 pull-up transistor	0 Pull-up transistor C		FF	
PU20	control bit	1	Pull-up transistor O	N	

Notes 1: "R" represents read enabled, and "W" represents write enabled.

INSTRUCTIONS 4502 Group

INSTRUCTIONS

The 4502 Group has the 113 instructions. Each instruction is described as follows;

- (1) Index list of instruction function
- (2) Machine instructions (index by alphabet)
- (3) Machine instructions (index by function)
- (4) Instruction code table

SYMBOL

The symbols shown below are used in the following list of instruction function and the machine instructions.

Symbol	Contents	Symbol	Contents
Α	Register A (4 bits)	WDF1	Watchdog timer flag
В	Register B (4 bits)	WEF	Watchdog timer enable flag
DR	Register D (3 bits)	INTE	Interrupt enable flag
E	Register E (8 bits)	EXF0	External 0 interrupt request flag
Q1	A/D control register Q1 (4 bits)	Р	Power down flag
V1	Interrupt control register V1 (4 bits)	ADF	A/D conversion completion flag
V2	Interrupt control register V2 (4 bits)		
11	Interrupt control register I1 (4 bits)	D	Port D (6 bits)
W1	Timer control register W1 (4 bits)	P0	Port P0 (4 bits)
W2	Timer control register W2 (4 bits)	P1	Port P1 (4 bits)
W6	Timer control register W6 (4 bits)	P2	Port P2 (2 bits)
MR	Clock control register MR (4 bits)	P3	Port P3 (2 bits)
K0	Key-on wakeup control register K0 (4 bits)	С	Port C (1 bit)
K1	Key-on wakeup control register K1 (4 bits)	K	Port K (1 bit)
K2	Key-on wakeup control register K2 (4 bits)		
PU0	Pull-up control register PU0 (4 bits)	x	Hexadecimal variable
PU1	Pull-up control register PU1 (4 bits)	у	Hexadecimal variable
PU2	Pull-up control register PU2 (4 bits)	z	Hexadecimal variable
X	Register X (4 bits)	р	Hexadecimal variable
Y	Register Y (4 bits)	n	Hexadecimal constant
Z	Register Z (2 bits)	i	Hexadecimal constant
DP	Data pointer (10 bits)	j	Hexadecimal constant
	(It consists of registers X, Y, and Z)	A3A2A1A0	Binary notation of hexadecimal variable A
PC	Program counter (14 bits)		(same for others)
РСн	High-order 7 bits of program counter		
PCL	Low-order 7 bits of program counter	←	Direction of data movement
SK	Stack register (14 bits X 8)	\leftrightarrow	Data exchange between a register and memory
SP	Stack pointer (3 bits)	?	Decision of state shown before "?"
CY	Carry flag	()	Contents of registers and memories
R1	Timer 1 reload register	-	Negate, Flag unchanged after executing instruction
R2	Timer 2 reload register	M(DP)	RAM address pointed by the data pointer
T1	Timer 1	а	Label indicating address a6 a5 a4 a3 a2 a1 a0
T2	Timer 2	p, a	Label indicating address a6 a5 a4 a3 a2 a1 a0
T1F	Timer 1 interrupt request flag		in page p5 p4 p3 p2 p1 p0
T2F	Timer 2 interrupt request flag	С	Hex. C + Hex. number x (also same for others)
		+	
		x	

Note: Some instructions of the 4502 Group has the skip function to unexecute the next described instruction. The 4502 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

INDEX LIST OF INSTRUCTION FUNCTION

Group- ing	Mnemonic	Function	Page	Group- ing	Mnemonic	Function	Page
	TAB	$(A) \leftarrow (B)$	77, 90	je.	XAMI j	$(A) \leftarrow \rightarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$	89, 90
	ТВА	(B) ← (A)	83, 90	RAM to register transfer		$j = 0 \text{ to } 15$ $(Y) \leftarrow (Y) + 1$	
	TAY	$(A) \leftarrow (Y)$	82, 90	registe	TMA j	(M(DP)) ← (A)	85, 90
	TYA	$(Y) \leftarrow (A)$	88, 90	AM to	,	$(X) \leftarrow (X)EXOR(j)$ j = 0 to 15	
Ē	TEAB	$(E7-E4) \leftarrow (B)$ $(E3-E0) \leftarrow (A)$	83, 90	<u>«</u>	LA n	(A) ← n	67, 92
transfe	TABE	(B) ← (E7–E4)	79.00		LATI	n = 0 to 15	07, 92
Register to register transfer	IADE	$(A) \leftarrow (E_3 - E_0)$	78, 90		ТАВР р	(SP) ← (SP) + 1 (SK(SP)) ← (PC)	78, 92
ster to r	TDA	$(DR2-DR0) \leftarrow (A2-A0)$	83, 90			$(PCH) \leftarrow p \text{ (Note)}$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$	
Regis	TAD	$ (A2-A0) \leftarrow (DR2-DR0) $ $ (A3) \leftarrow 0 $	78, 90			$(B) \leftarrow (ROM(PC))_{7-4}$ $(A) \leftarrow (ROM(PC))_{3-0}$ $(PC) \leftarrow (SK(SP))$	
	TAZ	$(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_3, A_2) \leftarrow 0$	83, 90		A.N.4	(SP) ← (SP) – 1	64.00
	TAX	$(A) \leftarrow (X)$	82, 90		AMC	$(A) \leftarrow (A) + (M(DP))$	61, 92
	TASP	$ (A2-A0) \leftarrow (SP2-SP0) $ $ (A3) \leftarrow 0 $	81, 90	Ē		$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$	
	LXY x, y	$(X) \leftarrow x \ x = 0 \text{ to } 15$ $(Y) \leftarrow y \ y = 0 \text{ to } 15$	67, 90	Arithmetic operation	A n	$(A) \leftarrow (A) + n$ n = 0 to 15	61, 92
RAM addresses	LZ z	$(Z) \leftarrow z z = 0 \text{ to } 3$	68, 90	thmeti	AND	$(A) \leftarrow (A) \text{ AND } (M(DP))$	62, 92
√M adc	INY	$(Y) \leftarrow (Y) + 1$	67, 90	Ā	OR	$(A) \leftarrow (A) OR (M(DP))$	69, 92
Α/	DEY	(Y) ← (Y) − 1	64, 90		sc	(CY) ← 1	72, 92
	ТАМ ј	$(A) \leftarrow (M(DP))$	80, 90		RC	(CY) ← 0	71, 92
_	,	$(X) \leftarrow (X)EXOR(j)$ j = 0 to 15			szc	(CY) = 0 ?	76, 92
ransfeı	XAM j	$(A) \leftarrow \rightarrow (M(DP))$	88, 90		СМА	$(A) \leftarrow (\overline{A})$	64, 92
RAM to register transfer	, , , , , ,	$(X) \leftarrow (X) \in X(X) = X(X) $ $(X) \leftarrow (X) \leftarrow (X) = X(X) $ $(X) \leftarrow (X) \leftarrow$	33, 30		RAR	→CY→A3A2A1A0	70, 92
RAM to	XAMD j	$(A) \leftarrow \rightarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$ $j = 0 \text{ to } 15$ $(Y) \leftarrow (Y) - 1$	88, 90				

Note: p is 0 to 15 for M34502M2, p is 0 to 31 for M34502M4/E4. 4502 Group INSTRUCTIONS

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Group- ing	Mnemonic	Function	Page	Group- ing	Mnemonic	Function	Page
	SB j	(Mj(DP)) ← 1	72, 92		DI	$(INTE) \leftarrow 0$	65, 96
		j = 0 to 3			EI	(INTE) ← 1	65, 96
ratio	RB j	$(Mj(DP)) \leftarrow 0$	70, 92				
Bit operation		j = 0 to 3			SNZ0	V10 = 0: (EXF0) = 1 ? After skipping, (EXF0) \leftarrow 0	74, 96
Θ	SZB j	(Mj(DP)) = 0 ?	75, 92			V10 = 1: SNZ0 = NOP	
		j = 0 to 3			011710	4 (1) (7)	74.00
	SEAM	(A) = (M(DP)) ?	73, 92	tion	SNZI0		74, 96
Comparison operation				nterrupt operation		, ,	
omp	SEA n	(A) = n ? n = 0 to 15	73, 92	upt c	TAV1	(A) ← (V1)	81, 96
0		11 = 0 to 13		nterr	TV1A	(V1) ← (A)	86, 96
	Ва	(PCL) ← a6-a0	62, 94		TA) (0	(A) (1/0)	04.00
atior	BL p, a	(PCH) ← p (Note)	62, 94		TAV2	(A) ← (V2)	81, 96
Branch operation	p,	(PCL) ← a6–a0	52, 51		TV2A	(V2) ← (A)	87, 96
anch	BLA p	(РСн) ← p (Note)	62, 94		TAI1	$(A) \leftarrow (I1)$	79, 96
ä	J =	$(PCL) \leftarrow (DR2-DR0, A3-A0)$, , , , ,
	BM a	(SP) ← (SP) + 1	63, 94		TI1A	$(I1) \leftarrow (A)$	84, 96
	Бій а	$(SF) \leftarrow (SF) + 1$ $(SK(SP)) \leftarrow (PC)$	03, 94		TAW1	(A) ← (W1)	81, 96
		(PCH) ← 2			T) A (4 A	(10/4)	07.00
u		(PCL) ← a6–a0			TW1A	(W1) ← (A)	87, 96
eratic	BML p, a	(SP) ← (SP) + 1	63, 94		TAW2	(A) ← (W2)	82, 96
e ob		$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note)$			TW2A	$(W2) \leftarrow (A)$	87, 96
Subroutine operation		(PCL) ← a6–a0					, , , , ,
Subr	BMLA p	(SP) ← (SP) + 1	63, 94		TAW6	(A) ← (W6)	82, 96
	DIVILA P	(SK(SP)) ← (PC)	05, 54		TW6A	(W6) ← (A)	87, 96
		$(PCH) \leftarrow p (Note)$		ation	TADA	(D) (T4- T4.)	77.00
		(PCL) ← (DR2–DR0, A3–A0)		opera	TAB1	$(B) \leftarrow (T17-T14)$ $(A) \leftarrow (T13-T10)$	77, 96
	RTI	$(PC) \leftarrow (SK(SP))$	72, 94	Timer operation			
		(SP) ← (SP) − 1		=	T1AB	$(R17-R14) \leftarrow (B)$ $(T17-T14) \leftarrow (B)$	76, 96
tion	RT	$(PC) \leftarrow (SK(SP))$	71, 94			(R13–R10) ← (A)	
		(SP) ← (SP) – 1				$(T13-T10) \leftarrow (A)$	
	RTS	$(PC) \leftarrow (SK(SP))$	72, 94		TAB2	(B) ← (T27–T24)	77, 96
		(SP) ← (SP) – 1				(A) ← (T23–T20)	
					T2AB	(R27–R24) ← (B)	76, 96
						(T27−T24) ← (B)	
						$(R23-R20) \leftarrow (A)$ $(T23-T20) \leftarrow (A)$	

Note: p is 0 to 15 for M34502M2, p is 0 to 31 for M34502M4/E4.

Froup- ing	Mnemonic	Function	Page	Group- ing	Mnemonic	Function	Page
Timer operation	TR1AB	$(R17-R14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$	86, 96		IAK	(A ₀) ← (K) (A ₃ –A ₁) ← 0	66, 98
	SNZT1	V12 = 0: (T1F) = 1? After skipping, (T1F) \leftarrow 0	75, 96		ОКА	(K) ← (A0)	68, 98
		V12 = 1: SNZT1 = NOP			TK0A	(K0) ← (A)	84, 98
	SNZT2	V13 = 0: (T2F) = 1 ? After skipping, (T2F) \leftarrow 0	75, 96	ion	TAK0	(A) ← (K0)	79, 98
		V13 = 1: SNZT2 = NOP		Input/Output operation	TK1A	(K1) ← (A)	84, 98
Input/Output operation	IAP0	(A) ← (P0)	66, 98	Output	TAK1	(A) ← (K1)	79, 98
	OP0A	(P0) ← (A)	68, 98	Input/0	TK2A	(K2) ← (A)	84, 98
	IAP1	(A) ← (P1)	66, 98		TAK2	(A) ← (K2)	79, 98
	OP1A	(P1) ← (A)	69, 98		TPU0A	(PU0) ← (A)	85, 98
	IAP2	$(A1, A0) \leftarrow (P21, P20)$ $(A3, A2) \leftarrow 0$	66, 98		TPU1A	(PU1) ← (A)	85, 98
	OP2A	(P21, P20) ← (A1, A0)	69, 98		TPU2A	(PU2) ← (A)	86, 98
	IAP3	(A1, A0) ← (P31, P30) (A3, A2) ← 0	67, 98		TABAD	In A/D conversion mode (Q13 = 0), (B) \leftarrow (AD9-AD6) (A) \leftarrow (AD5-AD2)	77, 100
	ОРЗА	(P31, P30) ← (A1, A0)	69, 98			In comparator mode (Q13 = 1), (B) \leftarrow (AD7–AD4) (A) \leftarrow (AD3–AD0)	
	CLD	(D) ← 1	63, 98		TALA	(A3, A2) ← (AD1, AD0)	80, 100
	RD	$(D(Y)) \leftarrow 0$ $(Y) = 0 \text{ to } 5$	71, 98			(A1, A0) ← 0	
	SD	$(D(Y)) \leftarrow 1$ $(Y) = 0 \text{ to } 5$	73, 98	peration	TADAB	$ (AD7-AD4) \leftarrow (B) $ $ (AD3-AD0) \leftarrow (A) $	78, 100
	SZD	(D(Y)) = 0 ?	76, 98	A/D conversion operati	TAQ1	(A) ← (Q1)	80, 100
		(Y) = 0 to 5		conve	TQ1A	(Q1) ← (A)	86, 100
	SCP	(C) ← 1	73, 98	A/D	ADST	(ADF) ← 0 Q13 = 0: A/D conversion starting	61, 100
	RCP	(C) ← 0	71, 98			Q13 = 1: Comparator operation starting	
	SNZCP	(C) = 1 ?	74, 98		SNZAD	V22 = 0: (ADF) = 1 ? After skipping, (ADF) ← 0 V22 = 1: SNZAD = NOP	74, 100

INDEX LIST OF INSTRUCTION FUNCTION (continued)

	LISTU	F INSTRUCTION FUNCT	ION (CO
Group- ing	Mnemonic	Function	Page
	NOP	(PC) ← (PC) + 1	68, 100
	POF	RAM back-up (Voltage drop detection circuit valid)	70, 100
	POF2	RAM back-up	70, 100
	EPOF	POF, POF2 instructions valid	65, 100
_	SNZP	(P) = 1 ?	75, 100
Other operation	DWDT	Stop of watchdog timer function enabled	65, 100
Other	WRST	(WDF1) = 1 ? After skipping, (WDF1) ← 0	88, 100
	СМСК	Ceramic resonance circuit selected	64, 100
	CRCK	RC oscillation circuit selected	64, 100
	TAMR	(A) ← (MR)	80, 100
	TMRA	$(MR) \leftarrow (A)$	85, 100

MACHINE INSTRUCTIONS (INDEX BY ALPHABET)

Instruction	and accumulator) D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	l lag C1	Skip condition
	16	1	1	_	Overflow = 0
Operation:	$(A) \leftarrow (A) + n$	Grouping:	Arithmetic	operation	
	n = 0 to 15	Description	: Adds the	/alue n in	the immediate field to
			register A,	and stores	s a result in register A.
			The contents	s of carry fla	g CY remains unchanged
			Skips the	next instru	ction when there is no
			overflow a	s the resul	t of operation.
			Executes t	he next in:	struction when there is
			overflow as	s the resul	t of operation.
ADST (A/D	conversion STart)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 0 0 1 1 1 1 1 1 2 2 9 F 1 ₆	1	1	_	_
			·		
Operation:	$(ADF) \leftarrow 0$	Grouping:	A/D conve	rsion opera	ation
	Q13 = 0: A/D conversion starting	Description	: Clears (0)	to A/D c	onversion completior
	Q13 = 1: Comparator operation starting		flag ADF, a	and the A/D	conversion at the A/D
	(Q13: bit 3 of A/D control register Q1)		conversion	mode (Q1	13 = 0) or the compara-
			tor operati	on at the c	comparator mode (Q1
			= 1) is star	ted.	
AM (Add a	ccumulator and Memory)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 0 1 0 1 0 1 0 ₂ 0 0 A ₁₆	1	1	_	_
		'	'		
Operation:	$(A) \leftarrow (A) + (M(DP))$	Grouping:	Arithmetic		
		Description			of M(DP) to register A
			Stores the	result in re	egister A. The contents
			of carry fla	g CY rema	ains unchanged.
	accumulator, Memory and Carry)	I		- ov	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 0 1 0 1 1 ₂ 0 0 B ₁₆		-	0/4	
		1	1	0/1	_
Operation:	$(A) \leftarrow (A) + (M(DP)) + (CY)$	Grouping:	Arithmetic	operation	
	(CY) ← Carry	Description	: Adds the d	contents of	f M(DP) and carry flag
			CY to regis	ster A. Sto	res the result in regis-
			ter A and c		_
				, -5	
		1			

AND (logic	al AND between accumulator and memory)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 0 0 0 0 2 0 1 8 16	words 1	cycles 1	_	_
On a notion :	(A) . (A) AND (M/DD))	Grouping:	Arithmetic	operation	
Operation:	$(A) \leftarrow (A) AND (M(DP))$			•	tion between the con-
				-	and the contents of e result in register A.
B a (Branc	h to address a)	<u> </u>			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	
Operation:	(PCL) ← a6 to a0	Grouping:	Branch ope	eration	
		Description	: Branch wit	hin a page	: Branches to address
		Note:	a in the ide Specify the including th	e branch a	ddress within the page
Instruction	ranch Long to address a in page p) Do Do	Number of	Number of	Flag CY	Skip condition
code	0 0 1 1 1 p4 p3 p2 p1 p0 2 0 E p p 16	words 2	cycles 2	_	
	1 0 0 a6 a5 a4 a3 a2 a1 a0 ₂ 2 a a ₁₆				
0	(2011)	Grouping:	Branch ope		· Propohoo to address
Operation:	(PCH) ← p (PCL) ← a6 to a0	Description	a in page p		: Branches to address
	(PCL) ← ab t0 au	Note:		for M345	02M2, and p is 0 to 31
DI 4 (D					
	anch Long to address (D) + (A) in page p)	Ni mala a mark	Ni mada a mini	Fla = OV	Oldin annul 111 an
Instruction code	D9 D0 0 0 0 1 0 0 0 0 0 1 0	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	2	_	-
		Grouping:	Branch ope		
Operation:	$(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$	Description		DR0 A3 A	: Branches to address 2 A1 A0)2 specified by page p.
		Note:	-	for M345	02M2, and p is 0 to 31

DIVI a (Diai	ch and Mark to address a in page 2)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 1 0 a6 a5 a4 a3 a2 a1 a0 2 1 a a a		1	_	_
Operation:	(SP) ← (SP) + 1	Grouping:	Subroutine	e call opera	l ation
- por uno	$(SK(SP)) \leftarrow (PC)$	Description			in page 2 : Calls the
	(PCH) ← 2		subroutine	at addres	s a in page 2.
	(PCL) ← a6-a0	Note:			ng from page 2 to an
					be called with the BM
					arts on page 2.
					r the stack because the
			IIIaxiiIIuIII	level of Sur	proutine nesting is 8.
	Branch and Mark Long to address a in page p)	N		EL 01/	01: 1:::
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
0000	0 0 1 1 0 p4 p3 p2 p1 p0 2 0 +p p 1	2	2	_	_
	1 0 0 a6 a5 a4 a3 a2 a1 a0 ₂ 2 a a ₁₁	Grouping	Subroutine	a coll oper	
Operation:	(SP) ← (SP) + 1	Grouping: Description			Calls the subroutine a
Operation.	$(SK(SP)) \leftarrow (SF) + 1$ $(SK(SP)) \leftarrow (PC)$	Description	address a		cans the subrodime a
	$(PCH) \leftarrow p$	Note:			602M2, and p is 0 to 31
	(PCL) ← a6–a0		for M3450	2M4/E4.	
			Be careful	not to ove	r the stack because the
			maximum l	level of sub	proutine nesting is 8.
	(5)				
	ranch and Mark Long to address (D) + (A) in page	· · ·	No. and an ad	FI 0)/	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 1 1 0 0 0 0 2 0 3 0		2	_	_
	1 0 0 p4 0 0 p3 p2 p1 p0 2 2 p p 1				
	1 0 0 p4 0 0 p3 p2 p1 p0 ₂ 2 p p p ₁	Grouping:	Subroutine		
Operation:	$(SP) \leftarrow (SP) + 1$	Description			Calls the subroutine a
	$(SK(SP)) \leftarrow (PC)$				Ro A3 A2 A1 A0)2 speci- nd A in page p.
	$(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$	Note:			id A iii page p. i02M2, and p is 0 to 31
	$(FCL) \leftarrow (DR2-DR0, A3-A0)$	Note.	for M3450		1021VIZ, and p 13 0 to 5
			Be careful	not to ove	r the stack because the
			maximum l	level of sub	routine nesting is 8.
CLD (CLea	r port D)	•			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 0 0 0 1	words	cycles		
		' 1	1	_	_
Operation:	(D) ← 1	Grouping:	Input/Outp	ut operation	on
			: Sets (1) to		

CMA (CoN	Iplement of Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 1 0 0 2 0 1 C 16	words	cycles		
	10	1	1	_	-
Operation:	$(A) \leftarrow \overline{(A)}$	Grouping:	Arithmetic	operation	
				•	mplement for register
			A's conten	ts in regist	er A.
CMCK (Cld	ock select: ceraMic resonance ClocK)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 0 1 1 0 0 1 1 0 1 0 ₂ 2 9 A ₁₆	words 1	cycles 1	_	
Operation:	Ceramic resonance circuit selected	Grouping:	Other oper		
		Description	stops the d		resonance circuit and illator.
CRCK (Clo	ock select: Rc oscillation ClocK)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 0 0 1 1 0 0 1 1 2 2 9 B ₁₆	1	1	_	-
Operation:	RC oscillation circuit selected	Grouping:	Other oper	ation	
		Description	: Selects the	e RC oscill	ation circuit and stops
			the on-chip	o oscillator.	
	rement register Y)	T			
Instruction code	D9 D0 0 0 0 1 0 1 1 1 2 0 1 7 40	Number of words	Number of cycles	Flag CY	Skip condition
oodo	0 0 0 0 0 1 0 1 1 1 1 2 0 1 7	1	1	-	(Y) = 15
Operation:	(Y) ← (Y) − 1	Grouping:	RAM addre	esses	
		Description	As a resultents of register skipped.	It of subtra gister Y is When the	contents of register Y. action, when the con- 15, the next instruction contents of register Y truction is executed.

DI (D): 11	1.4	•			
DI (Disable			T	1	
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	(INTE) ← 0	Grouping:	Interrupt co	ontrol oper	ation
		Description			t enable flag INTE, and
			disables th		
		Note:			by executing the DI in- ing 1 machine cycle.
DWDT (Dis	sable WatchDog Timer)	1			
Instruction code	D9 D0 1 0 1 0 0 1 1 1 0 0 2 9 C 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	Stop of watchdog timer function enabled	Grouping:	Other oper		
		Description	•	-	timer function by the
			WRST in: DWDT inst		after executing the
EI (Enable	Interrupt) D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	1 1.09 0 1	Citip Condition
	16	1	1	-	-
Operation:	(INTE) ← 1	Grouping:	Interrupt co	ontrol oper	ation
		Description	: Sets (1) to	interrupt	enable flag INTE, and
			enables the		
		Note:			by executing the EI in- ing 1 machine cycle.
EPOF (Ena	able POF instruction)	•			
Instruction	D9 D0 0 0 1 0 1 1 0 1 1 0 5 B	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	POF instruction, POF2 instruction valid	Grouping:	Other oper	ation	
		Description			te after POF or POF2 xecuting the EPOF in-

IAK (Input	Accumulator from port K)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	$ (A0) \leftarrow (K) $ $ (A3-A1) \leftarrow 0 $	Grouping: Description Note:	(A ₀) of reg After this	the conten ister A. instructio	nts of port K to the bit (n is executed, "0" is rder 3 bits (A3–A1) o
IAP0 (Inpu	t Accumulator from port P0)				
Instruction code	D9 D0 1 1 0 0 0 0 0 0 2 6 0 16	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	$(A) \leftarrow (P0)$	Grouping:	Input/Outp	ut operatio	n
	nt Accumulator from port P1)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 1 0 0 0 0 1 1 2 2 6 1 16	1	1	_	_
Operation:	(A) ← (P1)	Grouping: Description	Input/Outp		n f port P1 to register A.
IAP2 (Inpu	t Accumulator from port P2)				
Instruction	D9 D0 1 0 0 1 1 0 0 0 1 0 2 6 2 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	-
Operation:	(A1, A0) ← (P21, P20)	Grouping:	Input/Outp	ut operation	n
	$(A3,A2) \leftarrow 0$	Description	der 2 bits ((A1, A0) of	f port P2 to the low-or- register A. n is executed, "0" is

IAD2 /Innu	t Accumulator from nort D2)				
Instruction	t Accumulator from port P3) D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	Flag C1	Skip condition
	1 0 0 1 1 0 0 0 1 1 2 2 6 3 16	1	1	_	_
Operation:	(A1, A0) ← (P31, P30)	Grouping:	Input/Outp	ut operation	on
	$(A3, A2) \leftarrow 0$	Description			f port P3 to the low-or
			der 2 bits (
		Note:			is executed, sets "0" to
			the high-or	der 2 bits	(A3, A2) of register A.
INY (INcre	ment register Y)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 1 0 1 1 2 0 1 3	1	1	_	(Y) = 0
0	00 00 4	0	DAM - data		
Operation:	$(Y) \leftarrow (Y) + 1$	Grouping:	RAM addre		e of rogistor V As a ro
		Description			s of register Y. As a re- hen the contents of
					e next instruction is
			-		ontents of register Y is
					ction is executed.
			,		
LA n (Load	d n in Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code				- 3	
COUC		words	cycles		
code	0 0 0 1 1 1 n n n n ₂ 0 7 n ₁₆	words 1	cycles 1	_	Continuous description
		1	1		Continuous description
		1 Grouping:	1 Arithmetic	operation	description
	(A) ← n	1 Grouping:	1 Arithmetic	operation	description
	(A) ← n	1 Grouping:	Arithmetic : Loads the register A.	operation value n in	description the immediate field to
	(A) ← n	1 Grouping:	Arithmetic Loads the register A. When the	operation value n in LA instruc	description the immediate field to
	(A) ← n	1 Grouping:	Arithmetic : Loads the register A. When the coded and	operation value n in LA instruct	description the immediate field to tions are continuously
	(A) ← n	1 Grouping:	Arithmetic Loads the register A. When the coded and struction instruction	operation value n in LA instruct d executed is exec	the immediate field to tions are continuously d, only the first LA in- uted and other LA
	(A) ← n	1 Grouping:	Arithmetic : Loads the register A. When the coded and struction	operation value n in LA instruct d executed is exec	
Operation:	(A) ← n	1 Grouping:	Arithmetic Loads the register A. When the coded and struction instruction	operation value n in LA instruct d executed is exec	the immediate field to tions are continuously d, only the first LA in- uted and other LA
Operation:	(A) ← n n = 0 to 15 Load register X and Y with x and y) D9 D0 1 1 x3 x2 x1 x0 y3 y2 y1 y0 3 x y	1 Grouping:	Arithmetic Loads the register A. When the coded and struction instruction	operation value n in LA instruct d executed is exec	the immediate field to tions are continuously d, only the first LA in- uted and other LA
Operation: LXY x, y (L Instruction	$(A) \leftarrow n$ $n = 0 \text{ to } 15$ $\text{Load register X and Y with x and y}$	1 Grouping: Description	Arithmetic Loads the register A. When the coded and struction instruction skipped.	operation value n in LA instruct d executed is executed ins code	description the immediate field to tions are continuously d, only the first LA in- uted and other LA d continuously are
Operation: LXY x, y (I Instruction code	(A) ← n n = 0 to 15 Load register X and Y with x and y) D9 D0 1 1 x3 x2 x1 x0 y3 y2 y1 y0 3 x y	1 Grouping: Description Number of words	Arithmetic Loads the register A. When the coded and struction instruction skipped. Number of cycles	operation value n in LA instruct d executed is executed ins code Flag CY	description the immediate field to tions are continuously and other LA dontinuously are Skip condition Continuous
Coperation: LXY x, y (LInstruction code	(A) ← n n = 0 to 15 Load register X and Y with x and y) D9 D0 1 1 x3 x2 x1 x0 y3 y2 y1 y0 2 3 x y 16	1 Grouping: Description Number of words 1 Grouping:	Arithmetic Loads the register A. When the coded and struction instructio skipped. Number of cycles 1 RAM addre	operation value n in LA instruct d executed is executed ins code Flag CY	description the immediate field to tions are continuously d, only the first LA in uted and other LA d continuously are Skip condition Continuous description
Operation: LXY x, y (I Instruction code	(A) ← n n = 0 to 15 Load register X and Y with x and y) D9 D0 1 1 x3 x2 x1 x0 y3 y2 y1 y0 2 3 x y 16 (X) ← x x = 0 to 15	1 Grouping: Description Number of words 1 Grouping:	Arithmetic Loads the register A. When the coded and struction instruction skipped. Number of cycles 1 RAM addres: Loads the	operation value n in LA instruct d executed is executed ins code Flag CY - esses value x in	description the immediate field to tions are continuously and other LA continuously are Skip condition Continuous description the immediate field to
Operation: LXY x, y (I Instruction code	(A) ← n n = 0 to 15 Load register X and Y with x and y) D9 D0 1 1 x3 x2 x1 x0 y3 y2 y1 y0 2 3 x y 16 (X) ← x x = 0 to 15	1 Grouping: Description Number of words 1 Grouping:	Arithmetic Loads the register A. When the coded and struction instruction skipped. Number of cycles 1 RAM addres: Loads the register X,	operation value n in LA instruct d executed is executed ins code Flag CY esses value x in and the va	description the immediate field to tions are continuously and other LA continuously are Skip condition Continuous description the immediate field to alue y in the immediate
Operation: LXY x, y (I Instruction code	(A) ← n n = 0 to 15 Load register X and Y with x and y) D9 D0 1 1 x3 x2 x1 x0 y3 y2 y1 y0 2 3 x y 16 (X) ← x x = 0 to 15	1 Grouping: Description Number of words 1 Grouping:	Arithmetic Loads the register A. When the coded and struction instruction skipped. Number of cycles 1 RAM addres: Loads the register X, field to reg	operation value n in LA instruct d executed is executed is executed rs code Flag CY	description the immediate field to tions are continuously d, only the first LA in uted and other LA continuously are Skip condition Continuous description the immediate field to alue y in the immediate Vhen the LXY instruction
Operation: LXY x, y (L Instruction	(A) ← n n = 0 to 15 Load register X and Y with x and y) D9 D0 1 1 x3 x2 x1 x0 y3 y2 y1 y0 2 3 x y 16 (X) ← x x = 0 to 15	1 Grouping: Description Number of words 1 Grouping:	Arithmetic Loads the register A. When the coded and struction instruction skipped. Number of cycles 1 RAM addres: Loads the register X, field to register X tions are conly the fi	operation value n in LA instruct d executed is executed is executed rest code Flag CY	description the immediate field to tions are continuously d, only the first LA inted and other LA d continuously are Skip condition Continuous description the immediate field to take y in the immediate (/hen the LXY instructy coded and executed estruction is executed
Departion: LXY x, y (Instruction code	(A) ← n n = 0 to 15 Load register X and Y with x and y) D9 D0 1 1 x3 x2 x1 x0 y3 y2 y1 y0 2 3 x y 16 (X) ← x x = 0 to 15	1 Grouping: Description Number of words 1 Grouping:	Arithmetic Loads the register A. When the coded and struction instruction skipped. Number of cycles 1 RAM addres: Loads the register X, field to register X tions are conly the fi	operation value n in LA instruct d executed is executed is executed rest code Flag CY - esses value x in and the value is executed gister Y. W ontinuousl rst LXY instru	description the immediate field to tions are continuously d, only the first LA inuted and other LA d continuously are Skip condition Continuous

LZ z (Load	I register Z with z)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 0 1 0 0 1 z1 z0 2 0 4 +z 16	1	1	_	_
Operation:	$(Z) \leftarrow z z = 0 \text{ to } 3$	Grouping:	RAM addr	esses	
		Description	: Loads the register Z.	value z in	the immediate field t
NOP (No C	Deration)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16	1	1	-	-
Operation:	(PC) ← (PC) + 1	Grouping: Other operation Description: No operation; Adds 1 to program co			
Instruction	Dut port K from Accumulator) D9 D0 1 0 0 0 0 1 1 1 1 1 1 2 2 1 F 16	Number of words	Number of cycles	Flag CY	Skip condition
Instruction code	D9 D0 1 0 0 0 0 1 1 1 1 1 1 2 2 1 F 16	words 1	cycles 1	_	-
Instruction code	D9 D0	words	cycles 1 Input/Outp	- out operation e contents	-
Instruction code Operation:	D9 D0 1 0 0 0 0 1 1 1 1 1 1 2 2 1 F 16	words 1 Grouping:	cycles 1 Input/Outp : Outputs th	- out operation e contents	_ _
Instruction code Operation:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping:	cycles 1 Input/Outp : Outputs th	- out operation e contents	_ _
OPOA (Ou	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping: Description	cycles 1 Input/Outp : Outputs th A to port K	ut operatio	on of bit 0 (Ao) of registe

4502 Group

	put port P1 from Accumulator)				
Instruction	D9 D0	Number of words	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1	1	cycles 1	_	
Operation:	(P1) ← (A)	Grouping:	Input/Outp	ut operatio	un.
Operation.	$(\Gamma,\Gamma) \leftarrow (\Gamma)$	Description			s of register A to por
		·	P1.		ů .
OP2A (Out	eput port P2 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 0 0 1 0 2 2 2 2 1	words	cycles		
		1	1	_	
Operation:	$(P21, P20) \leftarrow (A1, A0)$	Grouping:	Input/Outp		
		Description	: Outputs th (A1, A0) of		of the low-order 2 bit to port P2.
OP3A (Out	put port P3 from Accumulator)	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 0 0 1 1 2 2 2 3 16	words	cycles	l lag 01	Skip condition
		1	1	-	-
Operation:	(P31, P30) ← (A1, A0)	Grouping:	Input/Outp		
		Description	(A1, A0) of		of the low-order 2 bits to port P3.
OR (logica	OR between accumulator and memory)				
Instruction code	D9 D0 0 0 0 1 1 0 0 1 9 t0	Number of words	Number of cycles	Flag CY	Skip condition
0000	0 0 0 0 0 1 1 0 0 1 2	1	1	-	-
Operation:	$(A) \leftarrow (A) OR (M(DP))$	Grouping:	Arithmetic	operation	
		1	: Takes the tents of r	OR opera egister A	tion between the con and the contents of e result in register A.

POF (Powe	er OFf1)				
Instruction code	D9 D0 0 0 0 0 0 0 0 1 0 2 16	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 0 0 0 0 0 0 0 1 0 2 16	1	1	_	_
Operation:	RAM back-up	Grouping:	Other oper	ration	
	However, voltage drop detection circuit valid				RAM back-up state b
			executing ing the EP		nstruction after execution.
			•		op detection circuit is vali
		Note:			n is not executed before
			executing	this instruc	ction, this instruction
			equivalent	to the NOF	instruction.
POF2 (Pov	ver OFf2)				
Instruction code	D9 D0 0 0 0 0 1 0 0 0 0 8 46	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	_
Operation:	RAM back-up	Grouping: Other operation			
		Description		-	RAM back-up state b
			_		2 instruction after ex
			all function		struction. Operations o
		Note:			peu. n is not executed befor
		Note:			ction, this instruction i
			_		instruction.
RAR (Rota	te Accumulator Right)				
Instruction	D9 Do	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 1 1 1 1 0 1 2 0 1 D 16	1	1	0/1	_
Operation:	→CY → A3A2A1A0 ¬	Grouping:	Arithmetic	operation	
		Description	: Rotates 1 l	bit of the c	ontents of register A in
			cluding the right.	contents	of carry flag CY to the
RB j (Rese	et Rit)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	Tag o T	
		1	1	_	-
Operation:	$(Mj(DP)) \leftarrow 0$	Grouping:	Bit operation	on	
	j = 0 to 3		: Clears (0)	the conter	nts of bit j (bit specifie e immediate field) o

RC (Reset	Carry flag)	(001111111			_
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 0 0 1 1 0 0 0 6	words	cycles		
	0 0 0 0 0 1 1 0 2	1	1	0	_
Operation:	(CY) ← 0	Grouping:	Arithmetic	operation	
•			: Clears (0)		ig CY.
RCP (Rese	et Port C)				
Instruction code	D9 D0 1 0 0 0 1 1 0 0 0 2 8 C 46	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	_
Operation:	(C) ← 0	Grouping:	Input/Outp		on
		Description	: Clears (0)	to port C.	
	port D specified by register Y)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 1 0 1 0 0 2	1	1	_	-
Operation:	$(D(Y)) \leftarrow 0$	Grouping:	Input/Outp	ut operatio	on
	However, (Y) = 0 to 5	Description Note:	Set 0 to 5 to ports (Do-When value)	to register D5). es except instructio	t D specified by register Y. Y because port D is six above are set to regis- n is equivalent to the
RT (ReTuri	n from subroutine)	•			
Instruction	D9 D0 0 0 1 0 0 0 1 0 0 0 4 4 4 46	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 0 0 0 1 0 0 2	1	2	_	-
Operation:	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	Grouping: Description	Return ope : Returns f called the	rom subr	outine to the routine

	rn from Interrupt)	1	1		
Instruction code	D9 D0 0 0 1 0 0 0 1 1 0 0 0 4 6 46	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 0 0 0 1 1 0 2	1	1	_	-
Operation:	$(PC) \leftarrow (SK(SP))$	Grouping:	Return ope	eration	
-	$(SP) \leftarrow (SP) - 1$				upt service routine to
		-	main routir		
			Returns ea	ch value o	of data pointer (X, Y, Z)
					s, NOP mode status by
					ption of the LA/LXY in
				-	and register B to the
			states just	before inte	errupt.
	urn from subroutine and Skip)		1		
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 0 0 1 0 0 1 0 1 2 0 4 5	words	cycles		011
		1	2	_	Skip at uncondition
Operation:	$(PC) \leftarrow (SK(SP))$	Grouping:	Return ope	eration	
Орегацоп.	$(SP) \leftarrow (SP) - 1$: Returns f	rom subro	outine to the routine
			called the	subroutine	, and skips the next in
			struction a	t unconditi	on.
SB j (Set E	Bit)			1	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
		1 1	1	_	_
		·			
Operation:	(Mj(DP)) ← 0		Bit operation	on	
Operation:	$ (Mj(DP)) \leftarrow 0 $ $ j = 0 \text{ to } 3 $	Grouping:			of bit j (bit specified by
Operation:		Grouping:	: Sets (1) th	e contents	of bit j (bit specified by nediate field) of M(DP).
Operation:		Grouping:	: Sets (1) th	e contents	
Operation:		Grouping:	: Sets (1) th	e contents	
Operation:		Grouping:	: Sets (1) th	e contents	
Operation:		Grouping:	: Sets (1) th	e contents	
	j = 0 to 3	Grouping:	: Sets (1) th	e contents	
SC (Set Ca	j = 0 to 3	Grouping: Description	s: Sets (1) the the value j	e contents in the imm	nediate field) of M(DP).
SC (Set Ca	j = 0 to 3 arry flag) D9 D0	Grouping: Description	Sets (1) the the value j	e contents	
SC (Set Ca	j = 0 to 3 arry flag)	Grouping: Description Number of words	Number of cycles	e contents in the imm	skip condition
SC (Set Ca	j = 0 to 3 arry flag) D9 D0 0 0 0 0 0 0 0 7	Grouping: Description	Sets (1) the the value j	e contents in the imm	nediate field) of M(DP).
SC (Set Ca Instruction code	j = 0 to 3 Arry flag) D9 D0 0 0 0 0 0 0 0 1 1 1 1 2 0 0 7 16	Number of words	Number of cycles	e contents in the imm	skip condition
SC (Set Ca Instruction code	j = 0 to 3 arry flag) D9 D0 0 0 0 0 0 0 0 7	Number of words 1 Grouping:	Number of cycles 1 Arithmetic	Flag CY 1 operation	Skip condition
SC (Set Ca Instruction code	j = 0 to 3 Arry flag) D9 D0 0 0 0 0 0 0 0 1 1 1 1 2 0 0 7 16	Number of words 1 Grouping:	Number of cycles	Flag CY 1 operation	Skip condition
SC (Set Ca Instruction code	j = 0 to 3 Arry flag) D9 D0 0 0 0 0 0 0 0 1 1 1 1 2 0 0 7 16	Number of words 1 Grouping:	Number of cycles 1 Arithmetic	Flag CY 1 operation	Skip condition
	j = 0 to 3 Arry flag) D9 D0 0 0 0 0 0 0 0 1 1 1 1 2 0 0 7 16	Number of words 1 Grouping:	Number of cycles 1 Arithmetic	Flag CY 1 operation	Skip condition
SC (Set Ca Instruction code	j = 0 to 3 Arry flag) D9 D0 0 0 0 0 0 0 0 1 1 1 1 2 0 0 7 16	Number of words 1 Grouping:	Number of cycles 1 Arithmetic	Flag CY 1 operation	Skip condition
SC (Set Ca Instruction code	j = 0 to 3 Arry flag) D9 D0 0 0 0 0 0 0 0 1 1 1 1 2 0 0 7 16	Number of words 1 Grouping:	Number of cycles 1 Arithmetic	Flag CY 1 operation	Skip condition

SCP (Set F	Port C)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 0 0 1 1 0 0 1 ₂ 2 8 D ₁₆	words	cycles		
		1	1	_	_
Operation:	(C) ← 1	Grouping:	Input/Outp	ut operation	n
		Description	: Sets (1) to	port C.	
SD (Set po	rt D specified by register Y)				
Instruction code	D9 D0 0 0 0 1 0 1 0 1 0 1 5 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	$(D(Y)) \leftarrow 1$	Grouping:	Input/Outp		
	(Y) = 0 to 5	Description: Sets (1) to a bit of port D specified by register Y. Note: Set 0 to 5 to register Y because port D is si ports (Do–D5). When values except above are set to register Y, this instruction is equivalent to th NOP instruction.			
SEA n (Ski	p Equal, Accumulator with immediate data n)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 1 0 0 1 0 1 2 0 2 5	2	2	_	(A) = n
	0 0 0 1 1 1 1 n n n n 2 0 7 n 16				
		Grouping: Description	Compariso		n uction when the con-
Operation:	(A) = n? n = 0 to 15	Description 1	tents of re- the immed Executes t	gister A is in a significate field. He next instance gister A is r	equal to the value n in truction when the con- ot equal to the value r
SEAM (Ski	p Equal, Accumulator with Memory)				
Instruction	D9 D0 0 0 1 0 0 1 1 0 0 2 6 40	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 1 0 0 1 0 0 1 16	1	1	_	(A) = (M(DP))
Operation:	(A) = (M(DP))?	Grouping:	Compariso	n operatio	n
		Description	tents of reg M(DP). Executes t	gister A is e he next ins egister A	uction when the con- equal to the contents o truction when the con- is not equal to the

SNZ0 (Skir	o if Non Zero condition of external 0 interrupt reques	t flag)			
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
0000	0 0 0 0 1 1 1 0 0 0 0 2 0 3 8 16	1	1	_	V10 = 0: (EXF0) = 1
Operation:	V10 = 0: (EXF0) = 1 ? After skipping, (EXF0) \leftarrow 0 V10 = 1: SNZ0 = NOP (V10 : bit 0 of the interrupt control register V1)	Grouping: Description	when externing is "1." Afterning the next in	= 0 : Skip rnal 0 inter r skipping, n the EXF struction. = 1 : This	ps the next instruction rrupt request flag EXF(clears (0) to the EXF(0 flag is "0," executes instruction is equiva uction.
SNZAD (S	kip if Non Zero condition of A/D conversion completi	on flag)			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
0000	1 0 1 0 0 0 0 1 1 1 1 2 2 8 7 16	1	1		V22 = 0: (ADF) = 1
Operation:	V22 = 0: (ADF) = 1 ? After skipping, (ADF) \leftarrow 0 V22 = 1: SNZAD = NOP (V22 : bit 2 of the interrupt control register V2)	Grouping: A/D conversion operation Description: When V22 = 0 : Skips the next instruction when A/D conversion completion flag A is "1." After skipping, clears (0) to the A flag. When the ADF flag is "0," executes the next instruction. When V22 = 1 : This instruction is equivalent to the NOP instruction.			
SNZCP (S	kip if Non Zero condition of Port C)			_	
Instruction code	D9 D0 1 0 0 1 0 0 1 2 8 9 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	(C) = 1
Operation:	(C) = 1 ?	Grouping: Description	tents of po	next instr rt C is "1." he next ins	uction when the con-
SNZIO (Ski	ip if Non Zero condition of external 0 Interrupt input p	 oin)			
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 1 1 1 0 1 0 2 0 3 A 16	1	1	_	I12 = 0 : (INT) = "L" I12 = 1 : (INT) = "H"
Operation:	I12 = 0 : (INT) = "L" ? I12 = 1 : (INT) = "H" ? (I12 : bit 2 of the interrupt control register I1)	Grouping: Description	when the I the next in pin is "H." When I12 when the I	= 0 : Skip level of IN estruction = 1 : Skip evel of IN	os the next instruction IT pin is "L." Executes when the level of INT os the next instruction T pin is "H." Executes when the level of INT

Instruction Code	N7D (Skin	if Non Zero condition of Power down flag)				
Operation: Ope	nstruction	D9 D0			Flag CY	Skip condition
Description: Skips the next instruction "1". After skipping, the P f changed. Executes the next instruction code Description: Description: Number of changed. Executes the next instruction that the provided in the provi	ode	0 0 0 0 0 0 0 0 1 1 1 2			_	(P) = 1
SNZT1 (Skip if Non Zero condition of Timer 1 inerrupt request flag)	peration:	(P) = 1 ?	Grouping:	Other oper	ation	
Number of cycles Number of cycles Flag CY			Description	"1". After skip changed. Executes	ping, the	P flag remains un-
code 1 0 1 0 0 0 0 0 2 2 8 0 16 1 1 - V1 Operation: V12 = 0: (T1F) = 1? After skipping, (T1F) ← 0 V12 = 1: SNZT1 = NOP When V12 = 1: Skips th when timer 1 interrupt request flag. When the T1F flag is next instruction. When V12 = 1: This inst lent to the NOP instruction SNZT2 (Skip if Non Zero condition of Timer 2 interrupt request flag) Instruction Do Do Number of words Number of Plag CY Number of words Number of Plag CY SV (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	NZT1 (Skip	o if Non Zero condition of Timer 1 inerrupt request f	lag)			
Operation: V12 = 0: (T1F) = 1?					Flag CY	Skip condition
After skipping, (T1F) ← 0	l	16	1	1	_	V12 = 0: (T1F) = 1
V12 = 1: SNZT1 = NOP	-	` ´				
(V12 = bit 2 of interrupt control register V1) "1." After skipping, clear flag. When the T1F flag is next instruction. When V12 = 1: This inst lent to the NOP instruction. When V12 = 1: This inst lent to the NOP instruction code Description		11 - 1	Description			
SNZT2 (Skip if Non Zero condition of Timer 2 inerrupt request flag)						
SNZT2 (Skip if Non Zero condition of Timer 2 inerrupt request flag) Instruction D9 D0 T 0 1 0 0 0 0 0 1 2 2 8 1 16 1 1 - V1 Operation: V13 = 0: (T2F) = 1? After skipping, (T2F) \leftarrow 0 V13 = 1: SNZT2 = NOP (V13 = bit 3 of interrupt control register V1) SZB j (Skip if Zero, Bit) Instruction D9 Operation: Number of vocles vocles Flag CY vocles vocles		(V12 = bit 2 of interrupt control register V1)				
When V12 = 1 : This inst lent to the NOP instruction SNZT2 (Skip if Non Zero condition of Timer 2 inerrupt request flag)				-		ag is "u," executes the
SNZT2 (Skip if Non Zero condition of Timer 2 inerrupt request flag)						instruction is equiva-
Instruction code						
Instruction code	N7T2 (Skir		lan)			
Code 1				Number of	Flag CV	Skip condition
Operation: V13 = 0: (T2F) = 1? After skipping, (T2F) \leftarrow 0 V13 = 1: SNZT2 = NOP (V13 = bit 3 of interrupt control register V1) SZB j (Skip if Zero, Bit) Instruction Code Operation: O Operation: V13 = 0: (T2F) = 1? After skipping, (T2F) \leftarrow 0 When V13 = 0: Skips the when timer 2 interrupt results in the skipping, clear flag. When the T2F flag is next instruction. When V13 = 1: This installent to the NOP instruction SZB j (Skip if Zero, Bit) Instruction Code Operation: O Operati	r				l lag O I	OKIP CONDITION
After skipping, (T2F) ← 0 V13 = 1: SNZT2 = NOP (V13 = bit 3 of interrupt control register V1) SZB j (Skip if Zero, Bit) Instruction code Operation: When V13 = 0: Skips the when timer 2 interrupt results in the skipping, clear flag. When the T2F flag is next instruction. When V13 = 1: This instruction. When V13 = 0: Skips the next instruction. When V13 = 0: Skips the skipping, clear flag. When the T2F flag is next instruction. When V13 = 0: Skips the Skips the next instruction. When V13 = 0: Skips the skipping. "1." After skipping, clear flag. When the T2F flag is next instruction. When V13 = 0: Skips the Skips the next instruction. When V13 = 0: Skips the skipping. "2." After skipping. "3." After skipping. "4." After skipping. "5." After skipping. "6." After skipping.	out [1	1	-	V13 = 0: (T2F) = 1
After skipping, (T2F) ← 0 V13 = 1: SNZT2 = NOP (V13 = bit 3 of interrupt control register V1) SZB j (Skip if Zero, Bit) Instruction code Operation: When V13 = 0: Skips the when timer 2 interrupt results in the skipping, clear flag. When the T2F flag is next instruction. When V13 = 1: This instruction. When V13 = 0: Skips the next instruction. When V13 = 0: Skips the skipping, clear flag. When the T2F flag is next instruction. When V13 = 0: Skips the Skips the next instruction. When V13 = 0: Skips the skipping. "1." After skipping, clear flag. When the T2F flag is next instruction. When V13 = 0: Skips the Skips the next instruction. When V13 = 0: Skips the skipping. "2." After skipping. "3." After skipping. "4." After skipping. "5." After skipping. "6." After skipping.	peration:	V13 = 0: (T2F) = 1 ?	Grouping:	Timer oper	ation	
(V13 = bit 3 of interrupt control register V1) "1." After skipping, clear flag. When the T2F flag is next instruction. When V13 = 1: This inst lent to the NOP instruction code SZB j (Skip if Zero, Bit) Instruction D9 O 0 0 1 0 0 0 j j 2 Operation: (Mj(DP)) = 0? j = 0 to 3 "1." After skipping, clear flag. When the T2F flag is next instruction. When V13 = 1: This inst lent to the NOP instruction. When V13 = 1: This inst lent to the NOP instruction. When V13 = 1: This inst lent to the NOP instruction. Number of words To yold a little a l		· · · · · · · · · · · · · · · · · · ·	Description: When V13 = 0 : Skips the next instruction when timer 2 interrupt request flag T2F is			
		V13 = 1: SNZT2 = NOP				
		(V13 = bit 3 of interrupt control register V1)				
				•		ag is "0," executes the
						instruction is equive
Instruction code $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						·
Instruction code $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7B i (Skin	if Zero, Rit)				
Operation: (Mj(DP)) = 0? j = 0 to 3 Grouping: Bit operation Description: Skips the next instruction the immediate field) of M(Executes the next instruct.	nstruction	D9 D0			Flag CY	Skip condition
j = 0 to 3 Description: Skips the next instruction tents of bit j (bit specified the immediate field) of M(Executes the next instruction tents of bit j (bit specified the immediate field) of M(ode			-	_	(Mj(DP)) = 0 j = 0 to 3
j = 0 to 3 Description: Skips the next instruction tents of bit j (bit specified the immediate field) of M(Executes the next instruction tents of bit j (bit specified the immediate field) of M(peration:	(Mj(DP)) = 0?	Grouping:	Bit operation	on	•
tents of bit j of M(DP) is "1	-			: Skips the tents of bit the immed Executes t	next instr t j (bit spe iate field) d he next ins	cified by the value j in of M(DP) is "0." struction when the con-

SZC (Skip	ıt ∠ero,	Carr	y flag)												
Instruction code	D9 0	0	0 1	0	1	1	1	D ₀		0	2	F	Number of words	Number of cycles	Flag CY	Skip condition
	0 0	1 0 1	0 1	0	'	'	'	•	2			16	1	1	_	(CY) = 0
Operation:	(CY) =	0 ?											Grouping:	Arithmetic	operation	
	,													tents of ca After skip changed.	next instr rry flag CY ping, the	CY flag remains un-
SZD (Skip	if Zero,	port	D spe	cifie	d by	re	aist	er \	<u>()</u>				<u> </u>			
Instruction	D9 0	o	0 1	0		1	0	D0 0		0	2	4 4	Number of words	Number of cycles	Flag CY	Skip condition
	0 0	0	0 1	0		0	1	1	2	0		B 16	2	2	_	(D(Y)) = 0 (Y) = 0 to 5
Operation:	(D(Y)) =	= 0 ?											Grouping:	Input/Outp		
	(Y) = 0												Description	D specified next instru	d by registe ction wher to register	ction when a bit of porter Y is "0." Executes the hit is "1." Y because port D is si
T1AB /Tra	unefor de	uto to	timor	1 or	nd ro	oic	otor.	D1	fre	-m	۸ ۵۵۱	ımı ılı	tor and roo	are set to equivalent	register	n values except abov Y, this instruction i P instruction.
T1AB (Tra	D9	iia io	umei	ı aı	iu ie	gis	ster	D ₀	ш) /	4000	IIIIuia	Number of	Number of	Flag CY	Skip condition
code	1 0	0	0 1	1	0	0	0	0	2	2	3	0 16	words	cycles 1	-	-
Operation:	(T17–T	14) ∠	(B)										Grouping:	Timer oper	ı ration	
	(R17–R (T13–T (R13–R	.14) ← 10) ←	(B) (A)										Grouping: Timer operation Description: Transfers the contents of register B to the high-order 4 bits of timer 1 and timer 1 reload register R1. Transfers the contents of register A to the low-order 4 bits of timer and timer 1 reload register R1.			
T2AB (Tra	nsfer da	ta to	timer	2 ar	nd re	gis	ter	R2	fro	m /	Accı	ımula	itor and reg	jister B)		
Instruction	D9						1	D ₀	1 1				Number of words	Number of cycles	Flag CY	Skip condition
code	1 0	0	0 1	1	0	0	0	1	2	2	3	116	1	1	_	_
Operation:	(T27–T: (R27–R (T23–T: (R23–R	.24) ← 20) ←	(B) (A)										Grouping: Description	high-order load regist	the conter 4 bits of ter R2. Tra to the low	nts of register B to the timer 2 and timer 2 re- ansfers the contents of -order 4 bits of timer 2 gister R2.

TAD /Trans	efer data to Assumulate from a sister D				
	sfer data to Accumulator from register B)	Ni i	Ni i	FI 0\	Older and differen
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 1 1 1 1 0 ₂ 0 1 E ₁₆	1	1	_	_
Operation:	(A) ← (B)	Grouping:	Other oper	ation	
	(-)				ts of register B to reg-
			ister A.		
TAB1 (Trai	nsfer data to Accumulator and register B from timer	1)			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
coue	1 0 0 1 1 1 0 0 0 0 0 2 2 7 0 16	1	1	_	_
Operation:	(B) ← (T17–T14)	Grouping:	Timer oper	ation	
орегиноп.	$(A) \leftarrow (T13-T10)$	Description			der 4 bits (T17–T14) of
			timer 1 to r	_	, ,
			Transfers t	the low-ord	der 4 bits (T13-T10) of
			timer 1 to r	egister A.	
TAB2 (Trai	nsfer data to Accumulator and register B from timer	2)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 1 0 0 0 1 2 2 7 1 16	words 1	cycles 1	_	
	(D) (To To)		_		
Operation:	$(B) \leftarrow (T27 - T24)$	Grouping:	Timer oper		dor 4 hito (TOT TO4) of
	$(A) \leftarrow (T23 - T20)$	Description	timer 2 to r	_	der 4 bits (T27-T24) of
				-	der 4 bits (T23-T20) of
			timer 2 to r		201 1 2110 (120 120) 01
TABAD (Ti	ransfer data to Accumulator and register B from regi	ster AD)			
Instruction	D9 D0 1 1 1 1 1 0 0 1 2 7 9	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 1 1 1 0 0 1 2 2 7 9 16	1	1	_	-
Operation:	In A/D conversion mode (Q13 = 0),	Grouping:	A/D conver	rsion opera	ation
орегилоп.	$(B) \leftarrow (AD9-AD6)$	Description	: In the A/D	conversion	mode (Q13 = 0), trans-
	$(A) \leftarrow (AD5-AD2)$		_		ts (AD9-AD6) of register
	In comparator mode (Q13 = 1),		-		the middle-order 4 bits
	$(B) \leftarrow (AD7 - AD4)$			-	AD to register A. In the
	$(A) \leftarrow (AD3-AD0)$				s = 1), transfers the high-
	(Q13: bit 3 of A/D control register Q1)) of comparator register low-order 4 bits (AD3-
			-		gister to register A.
		I	2, 3. 3311	, 2.2 0	,

TABE (Tra	nsfer data to Accumulator and register B from regist	er E)			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	(B) ← (E7–E4)	Grouping:	Register to	register t	ransfer
	(A) ← (E3–E0)			to register	order 4 bits (E7–E4) of B, and low-order 4 bits eer A.
TABP p (T	ransfer data to Accumulator and register B from Pro	gram mem	ory in page	(q :	
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 1 0 0 p4 p3 p2 p1 p0 2 0 8 p n6	words 1	cycles 3	_	_
Operation:	$(SP) \leftarrow (SP) + 1$	Grouping: Description	Arithmetic Transfers h		o register B and bits 3 to
	$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ $(B) \leftarrow (ROM(PC))7-4$ $(A) \leftarrow (ROM(PC))3-0$ $(PC) \leftarrow (SK(SP))$	Note:	0 to registe pattern in a A0)2 specifi p is 0 to 15 for M34502 When this	er A. These ad-dress (led by regis 5 for M345 2M4/E4. instruction	bits 7 to 0 are the ROM DR2 DR1 DR0 A3 A2 A sters A and D in page p. 502M2, and p is 0 to 3° is executed, be carefuck because 1 stage of
	(SP) ← (SP) – 1	stack register is used.			
	sfer data to Accumulator from register D)			T	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 1 0 1 0 0 0 1 2	1	1	_	_
Operation:	$(A2-A0) \leftarrow (DR2-DR0)$	Grouping:	Register to	register t	ransfer
	$(A3) \leftarrow 0$				nts of register D to the
					A ₀) of register A.
		Note:			on is executed, "0" is 3) of register A.
TADAB (Tr	ransfer data to register AD from Accumulator from re	egister B)			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
oode	1 0 0 0 1 1 1 0 0 1 2 2 3 9 16	1	1	-	_
On anation :	(AD- AD-) - (B)	Grouping:	A/D conve	rsion opera	lation
Operation:	(AD7–AD4) ← (B) (AD3–AD0) ← (A)		struction is In the com fers the c high-order register, a the low-ord tor register	equivalent nparator montents 4 bits (AD nd the coder 4 bits (AD der 4 bits (AD	mode (Q13 = 0), this into the NOP instruction. node (Q13 = 1), transof register B to the 07–AD4) of comparator ntents of register A to AD3–AD0) of compara-

4502 Group INSTRUCTIONS

Instruction codeD9Instruction codeD9TAK0 (Transfer dailnstruction codeD9CodeI 0 TAK1 (Transfer dailnstruction D9 code Instruction D9 code Operation: (A) \leftarrow (Comparison:	ta to Accumulator from register K0) D0 0 1 0 1 0 1 1 0 2 2 5 6 16	Number of words 1 Grouping:	Number of cycles 1 Input/Outp	Flag CY ut operatio the conter	Skip condition
TAK0 (Transfer da Instruction codeD9 1 0TAK1 (Transfer da Instruction code A) \leftarrow (TAK1 (Transfer da Instruction codeD9 1 1 0TAK2 (Transfer da	ta to Accumulator from register K0) D0 1 0 1 0 1 0 1 0 1 1 0 2 5 6 16	words 1 Grouping: Description Number of words 1 Grouping:	cycles 1 Interrupt o Transfers register I1 Number of cycles 1 Input/Outp Transfers	Peration the content to register Flag CY ut operatio the conter	ts of interrupt control A. Skip condition
	ta to Accumulator from register K0) Do 0 1 0 1 0 1 1 0 2 2 5 6 16	1 Grouping: Description Number of words 1 Grouping:	Interrupt of Transfers register I1 Number of cycles 1 Input/Outp Transfers	Peration the content to register Flag CY ut operation the content	Skip condition
TAK0 (Transfer data Instruction code $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ Operation: (A) \leftarrow (A) \leftarrow (Department) TAK1 (Transfer data Instruction Department) Code $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ Operation: (A) \leftarrow (C)	ta to Accumulator from register K0) D0 0 1 0 1 0 1 1 0 2 2 5 6 16	Number of words 1 Grouping:	Number of cycles 1 Input/Outp 1: Transfers	Flag CY ut operatio the conter	Skip condition
TAK0 (Transfer data Instruction code $1 0$) Operation: (A) \leftarrow (A) \leftarrow (A) \leftarrow (Department) TAK1 (Transfer data Instruction Department) Code $1 0$ Operation: (A) \leftarrow (C) TAK2 (Transfer data Instruction Code $1 0$)	ta to Accumulator from register K0) D0 0 1 0 1 0 1 1 0 2 2 5 6 16	Number of words 1 Grouping:	Number of cycles 1 Input/Outp 1: Transfers	Flag CY ut operatio the conter	Skip condition
Instruction code D9 1 0 Operation: (A) \leftarrow (A) TAK1 (Transfer dailor code 1 Instruction code 0 Operation: (A) \leftarrow (C) TAK2 (Transfer dailor code)	D0 0 1 0 1 0 1 1 0 2 2 5 6 16	Number of words 1 Grouping:	Number of cycles 1 Input/Outp 1: Transfers	Flag CY ut operatio the conter	Skip condition
Instruction code D9 1 0 Operation: (A) \leftarrow (A) TAK1 (Transfer dailor line) D9 code 1 0 Operation: (A) \leftarrow (C) TAK2 (Transfer dailor)	D0 0 1 0 1 0 1 1 0 2 2 5 6 16	words 1 Grouping:	cycles 1 Input/Outp Transfers	ut operation	<u> </u>
code $\begin{bmatrix} 1 & 0 \end{bmatrix}$ Operation: $(A) \leftarrow (A) \leftarrow$	0 1 0 1 0 1 1 0 2 2 5 6 16	words 1 Grouping:	cycles 1 Input/Outp Transfers	ut operation	<u> </u>
TAK1 (Transfer da Instruction D9 code 1 0 Operation: (A) ← (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 Grouping:	1 Input/Outp	ut operation the conter	_ n
TAK1 (Transfer date instruction D9 code 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	К0)		: Transfers	the conter	n
TAK1 (Transfer date instruction D9 code 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			: Transfers	the conter	···
Instruction D9 1 0 Operation: (A) ← (Doscription			nts of key-on wakeup
Instruction code D9 1 0 Operation: (A) ← (TAK2 (Transfer da			001111011109	ister K0 to	
code $\begin{bmatrix} 1 & 0 \end{bmatrix}$ Operation: (A) \leftarrow (ta to Accumulator from register K1)				
Operation: (A) ← (D ₀	Number of	Number of	Flag CY	Skip condition
TAK2 (Transfer da	0 1 0 1 1 0 0 1 2 5 9	words	cycles		
TAK2 (Transfer da	16	1	1	-	_
TAK2 (Transfer da	K1)	Grouping:	Input/Outp	ut operation	n
	,	Description			nts of key-on wakeup
			control reg	ister K1 to	register A.
Instruction Do	ta to Accumulator from register K2)		<u></u>		
Instruction D9 code 1 0		Number of words	Number of cycles	Flag CY	Skip condition
1 0	D0	1	1	-	_
Operation: $(A) \leftarrow (A)$		Crauning	Input/Outp	ut operatio	
oporation: (/// (Do D		<u> </u>		its of key-on wakeup
	Do D	Grouping: Description	control reg		

TALA (Tra	nsfer data to Accumulator from register LA)				
Instruction code	D9 D0 1 0 0 1 0 0 1 0 2 4 9 46	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	_
Operation:	$(A3, A2) \leftarrow (AD1, AD0)$	Grouping:	A/D conve	rsion opera	ation
·	$(A_1, A_0) \leftarrow 0$: Transfers t register AD of register	he low-ord to the hig A.	der 2 bits (AD1, AD0) of gh-order 2 bits (A3, A2) n is executed, "0" is
					der 2 bits (A1, A0) of
TAM j (Tra	nsfer data to Accumulator from Memory)				
Instruction code	D9 D0 1 0 1 1 0 0 j j j j 2 C j 46	Number of words	Number of cycles	Flag CY	Skip condition
_		1	1	-	-
Operation:	$(A) \leftarrow (M(DP))$	Grouping:	RAM to reg	gister trans	sfer
	$(X) \leftarrow (X)EXOR(j)$				contents of M(DP) to
	j = 0 to 15				sive OR operation is
			•		egister X and the value
			•		eld, and stores the re-
			sult in regis	ster X.	
	insfer data to Accumulator from register MR)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 1 0 0 1 0 2 2 5 2 16	words 1	cycles 1	_	_
On a notion :	(A) . (MD)	Grouping:	Other oper	ration	
Operation:	$(A) \leftarrow (MR)$	Grouping: Other operation Description: Transfers the contents of clock control reg.			
		ister MR to register A.			
	nsfer data to Accumulator from register Q1)		ı	1	
Instruction code	D9 D0 1 0 0 1 0 0 0 2 4 4 4 4 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	$(A) \leftarrow (Q1)$	Grouping:	A/D conve	rsion opera	ation
		Description: Transfers the contents of A/D control register Q1 to register A.			
		1			

	nsfer data to Accumulator from Stack Pointer)	1	ı		
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	$(A2-A0) \leftarrow (SP2-SP0)$	Grouping:	Register to	register tr	ansfer
	$(A3) \leftarrow 0$				s of stack pointer (SP)
	,				s (A2–A0) of register A.
		Note:	After this	instructio	n is executed, "0" is
			stored to th	ne bit 3 (Aa	s) of register A.
TAV1 (Tran	nsfer data to Accumulator from register V1)				
Instruction	D9 D0 0 0 1 0 1 0 1 0 0 0 5 4 40	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 0 1 0 1 0 0 2	1	1	_	-
Operation:	(A) ← (V1)	Grouping: Interrupt operation			
•					nts of interrupt control
			register V1	to registe	r A.
TAV2 (Tran	nsfer data to Accumulator from register V2)	•			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 1 0 1 0 1 0 5 5	words	cycles		- F
	16	1	1	_	_
Operation:	(A) ← (V2)	Grouping:	Interrupt o	peration	
·					nts of interrupt control
			register V2		
TAW1 (Tra	nsfer data to Accumulator from register W1)	•			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 0 1 0 1 1 2 4 B	words	cycles		- F
	16	1	1	_	_
0	(A) (A)(A)				
Operation:	(A) ← (W1)	Grouping:	Timer oper		(a. a.f. (bases a sector)
		Description			ts of timer control reg-
			ister W1 to	register A	
		1			

TAW2 (Tra	insfer data to Accumulator from register W2)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 0 1 1 0 0 ₁ 1 0 ₁₆	words 1	cycles 1	_	_
	(4) (1)(0)		-		
Operation:	$(A) \leftarrow (W2)$	Grouping:	Timer oper		
		Description		register A.	s of timer control reg
TAW6 (Tra	Insfer data to Accumulator from register W6)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	
Operation:	$(A) \leftarrow (W6)$	Grouping: Timer operation			
		Description		the content register A.	s of timer control reg
TAX (Trans	sfer data to Accumulator from register X)	Number of	Number of	Flag CY	Skip condition
code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words	cycles	-	Skip condition
Operation:	$(A) \leftarrow (X)$	Grouping: Register to register transfer Description: Transfers the contents of register X to reg			
		Description	ister A.	ine content	3 of register X to reg
	sfer data to Accumulator from register Y)		T	T T	
Instruction code	D9 D0 0 0 0 1 1 1 1 1 2 0 1 F 16	Number of words	Number of cycles	Flag CY	Skip condition
	110	1	1	_	_
0	$(A) \leftarrow (Y)$	Grouping:	Register to	register tra	ansfer
Operation:			. Transfers t	ha aantanta	of register Y to regis

4502 Group INSTRUCTIONS

	sfer data to Accumulator from register Z)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles		
	0 0 0 1 0 1 0 0 1 1 2 0 3 3 16	1	1	_	-
Operation:	$(A_1, A_0) \leftarrow (Z_1, Z_0)$	Grouping:	Register to	register tr	ansfer
	$(A3, A2) \leftarrow 0$				nts of register Z to the
	(,,				A ₀) of register A.
		Note:	After this	instructio	n is executed, "0" is rder 2 bits (A3, A2) of
TBA (Trans	sfer data to register B from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 0 1 1 1 0 ₂ 0 0 E ₁₆	words	cycles		
		1	1	_	<u>-</u>
Operation:	$(B) \leftarrow (A)$	Grouping:	Register to	register tr	ansfer
		Description	: Transfers t	he content	s of register A to regis-
			ter B.		
TDA (Trans	sfer data to register D from Accumulator) D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 1 0 1 0 1 0 0 1 2 0 2 9 16	1	1	_	-
Operation:	(DR2−DR0) ← (A2−A0)	Grouping:	Register to	register tr	ansfer
		Description			nts of the low-order 3 er A to register D.
TEAB (Tra	nsfer data to register E from Accumulator and regist	er B)			
Instruction	D9 D0 0 0 0 1 1 0 1 0 0 1 A 40	Number of words	Number of cycles	Flag CY	Skip condition
oouc	0 0 0 0 0 1 1 0 1 0 2 0 1 A	1	1	_	_
Operation:	(E7–E4) ← (B)	Grouping:	Register to	register tr	ansfer
	(E3–E0) ← (A)	Description	high-order	4 bits (E3- ts of regist	ets of register B to the -E0) of register E, and eer A to the low-order 4 eer E.

TI1A (Tran	sfer data to register I1 from Accumulator)					
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
oode	1 0 0 0 0 1 0 1 1 1 1 2 2 1 7 16	1	1	_	_	
Operation:	(I1) ← (A)	Grouping:	Interrupt o	neration		
орегацоп.	$(11) \leftarrow (A)$			he content	s of register A to inter-	
TKOA /Tro	nefer data to register KO from Accumulator					
	nsfer data to register K0 from Accumulator)	Th	No	FI 0\/	01: 1:::	
Instruction code	D9 D0 1 0 0 1 1 0 1 1 2 2 1 B 16	Number of words	Number of cycles	Flag CY	Skip condition	
		1	1	_	_	
Operation:	$(K0) \leftarrow (A)$	Grouping: Input/Output operation				
		Description	: Transfers to on wakeup		ts of register A to key-	
	nsfer data to register K1 from Accumulator)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 0 0 1 0 1 0 0 2 2 1 4 16	words 1	cycles 1	_	_	
Operation:	(K1) ← (A)	Grouping:	Input/Outp	ut operatio	n	
oporation.					ts of register A to key-	
			on wakeup	control re	gister K1.	
TK2A (Tra	nsfer data to register K2 from Accumulator)					
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
code	1 0 0 0 0 1 0 1 0 1 2 2 1 5	1	1	_	-	
Operation:	(K2) ← (A)	Grouping:	Input/Outp	ut operatio	n	
ореганоп.	(1/2) ← (A)			the conten	ts of register A to key-	

TMA i (Tra	nsfer data to Memory from Accumulator)				
Instruction	D9 D0 1 0 1 1 j j j 2 B j 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	-
Operation:	$(M(DP)) \leftarrow (A)$ $(X) \leftarrow (X)EXOR(j)$ j = 0 to 15	Grouping: Description	to M(DP), a formed be	ferring the an exclusive tween reg	efer contents of register A re OR operation is per ister X and the value d, and stores the resul
TMRA (Tra	ansfer data to register MR from Accumulator)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 0 1 1 0 2 2 1 6 16	1	1	_	_
Operation:	$(MR) \leftarrow (A)$	Grouping:	Other oper	ation	
		Description	: Transfers t control reg		ts of register A to clock
TPU0A (Tr	ransfer data to register PU0 from Accumulator) De Do	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 1 0 1 1 0 1 ₂ 2 2 D ₁₆	words 1	cycles 1	_	_
Operation:	(PU0) ← (A)	Grouping: Description	Input/Outp :: Transfers t up control	the conten	ts of register A to pull-
			: Transfers	the conten	ts of register A to pull-
TPU1A (Tr	ansfer data to register PU1 from Accumulator)		: Transfers	the conten	ts of register A to pull
TPU1A (Tr	ansfer data to register PU1 from Accumulator)	Description Number of	up control	the conten	ts of register A to pull- J0.

4502 Group INSTRUCTIONS

MACHINI	E INSTRUCTIONS (INDEX BY ALPHABET)	(continu	uea)		
TPU2A (Tr	ransfer data to register PU2 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 1 1 1 1 ₂ 2 2 F ₁₆	words	cycles		
		1	1	_	_
Operation:	(PU2) ← (A)	Grouping:	Input/Outp	ut operatio	
оролино	(* 32) * (* 9	Description			ts of register A to pull-
		_	up control		
				_	
TQ1A (Tra	nsfer data to register Q1 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 0 0 0 0 0 1 0 0 2 2 0 4 16	words	cycles		
		1	1	_	_
Operation:	(Q1) ← (A)	Grouping:	A/D conve	rsion oner:	ation
oporano		Description			its of register A to A/D
			control reg		Ü
TR1AB (Tr	ransfer data to register R1 from Accumulator and reg	gister B)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 1 1 1 1 1 ₂ 2 3 F ₁₆	words	cycles		
		1	1	_	_
Operation:	(R17–R14) ← (B)	Grouping:	Timer oper	ation	
o por unom	$(R13-R10) \leftarrow (A)$	Description			its of register B to the
					7-R14) of reload regis-
			ter R1, and	d the conte	ents of register A to the
			low-order	4 bits (R13	-R10) of reload regis-
			ter R1.		
TV1A (Tra	nsfer data to register V1 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 1 1 1 1 1 ₂ 0 3 F ₁₆	words	cycles		
		1	1	_	_
Operation:	(V1) ← (A)	Grouping:	Interrupt o	peration	
орегиноп.		Description			ts of register A to inter-
			rupt contro		•

TW1A (Transfer data to register W1 from Accumulator) TW1A (Transfer data to register W1 from Accumulator) Instruction code TW1A (Transfer data to register W1 from Accumulator) Instruction code TW1A (Transfer data to register W1 from Accumulator) Instruction code TW1A (Transfer data to register W2 from Accumulator) Instruction code TW2A (Transfer data to register W2 from Accumulator) TW2A (Transfer data to register W2 from Accumulator) Instruction code TW2A (Transfer data to register W2 from Accumulator) Instruction code TW2A (Transfer data to register W2 from Accumulator) Instruction code TW2A (Transfer data to register W2 from Accumulator) Instruction code TW2A (Transfer data to register W2 from Accumulator) Instruction code TW2A (Transfer data to register W2 from Accumulator) Instruction code TW3A (Transfer data to register W2 from Accumulator) Instruction code TW3A (Transfer data to register W2 from Accumulator) Instruction code TW3A (Transfer data to register W2 from Accumulator) Instruction code TW3A (Transfer data to register W3A from Accumulator) Instruction code TW3A (Transfer data to register W3A from Accumulator) Instruction code TW3A (Transfer data to register W3A from Accumulator) Instruction code TW3A (Transfer data to register W3A from Accumulator) Instruction code TW3A (Transfer data to register W3A from Accumulator) Instruction code TW3A (Transfer data to register W3A from Accumulator) Instruction code TW3A (Transfer data to register W3A from Accumulator) Instruction code TW3A (Transfer data to register W3A from Accumulator) Instruction code TW3A (Transfer data to register W3A from Accumulator) Instruction code TW3A (Transfer data to register W3A from Accumulator) Instruction code TW3A (Transfer data to register W3A from Accumulator) Instruction code TW3A (Transfer data to register W3A from Accumulator) Instruction code code code code code code code code	T\/2A /Tro	refer data to register V2 from Accomplator				
Code 0			Ni	Ni wala a was	FI 01/	Older and distinct
TW1A (Transfer data to register W1 from Accumulator)					Flag CY	Skip condition
TW1A (Transfer data to register W1 from Accumulator)	code	0 0 0 0 1 1 1 1 1 1 0 ₂ 0 3 E ₁₆		-	_	_
TW1A (Transfer data to register W1 from Accumulator) Instruction code	Operation:	(V2) ← (A)	Grouping:	Interrupt or	peration	
	•			: Transfers t	he content	s of register A to inter-
				rupt contro	l register \	/2.
Code 1	TW1A (Tra	nnsfer data to register W1 from Accumulator)				
Operation: (W1) \leftarrow (A)					Flag CY	Skip condition
		16	1	1	-	-
	Operation:	(W1) ← (A)	Groupina:	Timer oper	ation	
						ts of register A to timer
						· ·
Operation: $(W2) \leftarrow (A)$		D9 D0			Flag CY	Skip condition
	code	1 0 0 0 0 0 1 1 1 1 1 ₂ 2 0 F ₁₆		-	_	_
	Operation:	(W2) ← (Δ)	Grouping:	Timer oner	ation	
	Operation.	$(\mathbb{W}^2) \leftarrow (\mathbb{A})$				ts of register A to timer
	TW6A (Tra	insfer data to register W6 from Accumulator)	•			
Operation: (W6) \leftarrow (A)	Instruction	D9 D0			Flag CY	Skip condition
Description: Transfers the contents of register A to tire	-	1 0 0 0 0 1 0 0 1 1 2 2 1 3 16	1	1	-	-
Description: Transfers the contents of register A to tire	Operation:	(W6) ← (A)	Grouping.	Timer oner	ation	
ļ ·	орегиноп.	(110) \ (11)		•		ts of register A to timer
						3

TYA (Trans	sfer data	to r	egiste	rYt	rom <i>i</i>	4C(Jun	านเล	ato	ſ)						
Instruction	D9							D ₀		<u>, </u>			Number of	Number of	Flag CY	Skip condition
code	0 0	0	0 0	0	1 '	1	0	0		0	0	C ₁₆	words	cycles		
									12			16	1	1	_	_
Operation:	(Y) ← (A	4)											Grouping:	Register to	register t	ansfer
·	. , .	,														s of register A to regis-
														ter Y.		
WRST (Wa	atchdog	time	r ReS	eT)												
Instruction code	D9	1	0 1	0	0 (o	0	D ₀]	2	А	0 40	Number of words	Number of cycles	Flag CY	Skip condition
			0 1 1	101					2			16	1	1	-	(WDF1) = 1
Operation:	(WDF1)	= 1 ?	,		_								Grouping:	Other oper	ration	
	After sk	ipping	յ, (WDF	[:] 1) ←	0								Description			uction when watchdog
																." After skipping, clears
															_	. When the WDF1 flag
																next instruction. Also,
															_	imer function when ex- nstruction immediately
														after the D		•
XAM j (eX	change		mulat	or a	nd M	om		, da	ıta)							
Instruction	D9	1000	mulat	Oi ai	IU IVI	CII	iOiy	D ₀	ııa,	1			Number of	Number of	Flag CY	Skip condition
code	1 0	1	1 0	1	i i	Т	;]	i	1	2	D		words	cycles	l lag 01	Onp condition
	1 0	<u> </u>	1 0		, ,		, I	J	2			J16	1	1	-	_
Operation:	(A) ←→	- (Μ(Γ	DP))										Grouping:	RAM to re	gister trans	sfer
	$(X) \leftarrow (X)$	X)EX(OR(j)										Description	n: After exch	nanging th	ne contents of M(DP)
	j = 0 to	15												with the co	ntents of r	egister A, an exclusive
																ormed between regis-
															-	in the immediate field,
														and stores	the result	in register X.
XAMD j (e	Xchange	Ας,			and i	<u></u>		rv c	- tet	2 2	nd F)ecre	ment regist	er V and sk	rin)	
Instruction	D9	,,,,,,,	Jamaic	2101	una i	VIC	1110	D ₀	Jul	u u	10 0	700101	Number of	Number of	Flag CY	Skip condition
code	1 0	1	1 1	1	j j		j	j]	2	F	j ₁₆	words	cycles		•
									12			10	1	1	_	(Y) = 15
Operation:	(A) ←→	· (M(C)P))										Grouping: Description	RAM to req		e contents of M(DP)
	$(X) \leftarrow (X)$		OR(j)											with the co	ntents of r	egister A, an exclusive
	j = 0 to															ormed between regis- in the immediate field,
	(Y) ← (`	r) – 1														in register X.
														Subtracts	1 from the	contents of register Y.
													1	AC 2 PACIE	T OT CUINTY	
																action, when the con- 15. the next instruction
														tents of req	gister Y is When the	15, the next instruction contents of register Y struction is executed.

	change Accumulat							í	01.1
Instruction code	D9 D8 D7 D6 D5	D4 D3 D2 D1	D ₀	2	E i	Number of words	Number of cycles	Flag CY	Skip condition
					16	1	1	_	(Y) = 0
Operation:	$(A) \longleftrightarrow (M(DP))$					Grouping:	RAM to reg	gister trans	sfer
Operation.	$(X) \leftarrow (X) \in (X) \in (X) $ $(X) \leftarrow (X) \in (X) \in (X) $ $(X) \leftarrow (X) \in (X) $					Description	with the co OR operat ter X and t and stores Adds 1 to t sult of ac register Y skipped. w	ntents of rion is perfihe value jithe result he content dition, withen the content the total the content the conte	ne contents of M(DP) egister A, an exclusive ormed between regisin the immediate field, in register X. as of register Y. As a rehen the contents of e next instruction is ontents of register Y is often as executed.

MACHINE INSTRUCTIONS (INDEX BY TYPES)

	INE INS				140	(11	10		וט	•		-3)				l	T
Parameter						In	stru	ction	cod	e			7		er of ds	er of les	Function
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	D ₀	Hexa no	ade otati		Number of words	Number cycles	runcion
	TAB	0	0	0	0	0	1	1	1	1	0	0	1	Е	1	1	(A) ← (B)
	ТВА	0	0	0	0	0	0	1	1	1	0	0	0	Ε	1	1	(B) ← (A)
	TAY	0	0	0	0	0	1	1	1	1	1	0	1	F	1	1	(A) ← (Y)
	TYA	0	0	0	0	0	0	1	1	0	0	0	0	С	1	1	(Y) ← (A)
transfe	TEAB	0	0	0	0	0	1	1	0	1	0	0	1	Α	1	1	(E7–E4) ← (B) (E3–E0) ← (A)
Register to register transfer	TABE	0	0	0	0	1	0	1	0	1	0	0	2	Α	1	1	(B) ← (E7–E4) (A) ← (E3–E0)
r to r	TDA	0	0	0	0	1	0	1	0	0	1	0	2	9	1	1	(DR2−DR0) ← (A2−A0)
Registe	TAD	0	0	0	1	0	1	0	0	0	1	0	5	1	1	1	$ (A_2-A_0) \leftarrow (DR_2-DR_0) $ $ (A_3) \leftarrow 0 $
	TAZ	0	0	0	1	0	1	0	0	1	1	0	5	3	1	1	$(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_3, A_2) \leftarrow 0$
	TAX	0	0	0	1	0	1	0	0	1	0	0	5	2	1	1	$(A) \leftarrow (X)$
	TASP	0	0	0	1	0	1	0	0	0	0	0	5	0	1	1	(A2–A0) ← (SP2–SP0) (A3) ← 0
	LXY x, y	1	1	Х3	X2	X1	X 0	уз	y2	y1	у0	3	х	у	1	1	$(X) \leftarrow x \ x = 0 \text{ to } 15$ $(Y) \leftarrow y \ y = 0 \text{ to } 15$
sesses	LZ z	0	0	0	1	0	0	1	0	Z1	Z0	0	4	8 +z	1	1	$(Z) \leftarrow z z = 0 \text{ to } 3$
RAM addresses	INY	0	0	0	0	0	1	0	0	1	1	0	1	3	1	1	(Y) ← (Y) + 1
<u> </u>	DEY	0	0	0	0	0	1	0	1	1	1	0	1	7	1	1	$(Y) \leftarrow (Y) - 1$
	TAM j	1	0	1	1	0	0	j	j	j	j	2	С	j	1	1	$ \begin{array}{l} (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array} $
transfer	ХАМ ј	1	0	1	1	0	1	j	j	j	j	2	D	j	1	1	$ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array} $
RAM to register transfer	XAMD j	1	0	1	1	1	1	j	j	j	j	2	F	j	1	1	$ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) - 1 \end{array} $
RAN	XAMI j	1	0	1	1	1	0	j	j	j	j	2	Ε	j	1	1	$ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) + 1 \end{array} $
	ТМА ј	1	0	1	0	1	1	j	j	j	j	2	В	j	1	1	$(M(DP)) \leftarrow (A)$ $(X) \leftarrow (X)EXOR(j)$ j = 0 to 15

Skip condition	Carry flag CY	Datailed description
-	_	Transfers the contents of register B to register A.
-	_	Transfers the contents of register A to register B.
-	_	Transfers the contents of register Y to register A.
-	_	Transfers the contents of register A to register Y.
-	_	Transfers the contents of register B to the high-order 4 bits (E3–E0) of register E, and the contents of register A to the low-order 4 bits (E3–E0) of register E.
-	_	Transfers the high-order 4 bits (E7–E4) of register E to register B, and low-order 4 bits of register E to register A.
-	_	Transfers the contents of the low-order 3 bits (A2–A0) of register A to register D.
-	_	Transfers the contents of register D to the low-order 3 bits (A2–A0) of register A.
-	_	Transfers the contents of register Z to the low-order 2 bits (A1, A0) of register A.
_	_	Transfers the contents of register X to register A.
-	_	Transfers the contents of stack pointer (SP) to the low-order 3 bits (A2–A0) of register A.
Continuous description	-	Loads the value x in the immediate field to register X, and the value y in the immediate field to register Y. When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.
-	_	Loads the value z in the immediate field to register Z.
(Y) = 0	_	Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. When the contents of register Y is not 0, the next instruction is executed.
(Y) = 15	-	Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
-	-	After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
-	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
(Y) = 15	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
(Y) = 0	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. when the contents of register Y is not 0, the next instruction is executed.
_	-	After transferring the contents of register A to M(DP), an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.

Parameter	INE INS						stru					,			of	<u></u>	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Дз	D2	D1	D ₀			ecimal tion	Number of words	Number of cycles	Function
	LA n	0	0	0	1	1	1	n	n	n	n	0	7	n	1	1	(A) ← n n = 0 to 15
	ТАВР р	0	0	1	0	0	p4	рз	p2	p1	р0	0	8 +	p p	1	3	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note)$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ $(B) \leftarrow (ROM(PC))7-4$ $(A) \leftarrow (ROM(PC))3-0$ $(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$
	АМ	0	0	0	0	0	0	1	0	1	0	0	0	Α	1	1	$(A) \leftarrow (A) + (M(DP))$
ration	AMC	0	0	0	0	0	0	1	0	1	1	0	0	В	1	1	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$
Arithmetic operation	A n	0	0	0	1	1	0	n	n	n	n	0	6	n	1	1	$(A) \leftarrow (A) + n$ n = 0 to 15
Arit	AND	0	0	0	0	0	1	1	0	0	0	0	1	8	1	1	$(A) \leftarrow (A) \text{ AND } (M(DP))$
	OR	0	0	0	0	0	1	1	0	0	1	0	1	9	1	1	$(A) \leftarrow (A) OR (M(DP))$
	sc	0	0	0	0	0	0	0	1	1	1	0	0	7	1	1	(CY) ← 1
	RC	0	0	0	0	0	0	0	1	1	0	0	0	6	1	1	(CY) ← 0
	szc	0	0	0	0	1	0	1	1	1	1	0	2	F	1	1	(CY) = 0 ?
	СМА	0	0	0	0	0	1	1	1	0	0	0	1	С	1	1	$(A) \leftarrow (\overline{A})$
	RAR	0	0	0	0	0	1	1	1	0	1	0	1	D	1	1	CY A3A2A1A0
	SB j	0	0	0	1	0	1	1	1	j	j	0	5	C +j	1	1	(Mj(DP)) ← 1 j = 0 to 3
Bit operation	RB j	0	0	0	1	0	0	1	1	j	j	0	4	C +j	1	1	$(Mj(DP)) \leftarrow 0$ j = 0 to 3
Bit o	SZB j	0	0	0	0	1	0	0	0	j	j	0	2	j	1	1	(Mj(DP)) = 0 ? j = 0 to 3
	SEAM	0	0	0	0	1	0	0	1	1	0	0	2	6	1	1	(A) = (M(DP))?
arison ation	SEA n	0	0	0	0	1	0	0	1	0	1	0	2	5	2	2	(A) = n ?
Comparison operation		0	0	0	1	1	1	n	n	n	n	0	7	n			n = 0 to 15

Note :p is 0 to 15 for M34502M2, p is 0 to 31 for M34502M4/E4.

Skip condition	Carry flag CY	Datailed description
Continuous description	_	Loads the value n in the immediate field to register A. When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped.
-	_	Transfers bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 7 to 0 are the ROM pattern in address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers A and D in page p. When this instruction is executed, be careful not to over the stack because 1 stage of stack register is used.
-	_	Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.
-	0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
Overflow = 0	_	Adds the value n in the immediate field to register A, and stores a result in register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation. Executes the next instruction when there is overflow as the result of operation.
-	-	Takes the AND operation between the contents of register A and the contents of M(DP), and stores the result in register A.
-	_	Takes the OR operation between the contents of register A and the contents of M(DP), and stores the result in register A.
-	1	Sets (1) to carry flag CY.
-	0	Clears (0) to carry flag CY.
(CY) = 0	-	Skips the next instruction when the contents of carry flag CY is "0."
-	-	Stores the one's complement for register A's contents in register A.
-	0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.
-	-	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
-	-	Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
(Mj(DP)) = 0 j = 0 to 3	_	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of M(DP) is "0." Executes the next instruction when the contents of bit j of M(DP) is "1."
(A) = (M(DP))	-	Skips the next instruction when the contents of register A is equal to the contents of M(DP). Executes the next instruction when the contents of register A is not equal to the contents of M(DP).
(A) = n	_	Skips the next instruction when the contents of register A is equal to the value n in the immediate field. Executes the next instruction when the contents of register A is not equal to the value n in the immediate field.

4502 Group INSTRUCTIONS

MACHINE INSTRUCTIONS (continued)

Parameter						In	stru	ction	cod	e					er of	er of	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀			ecima tion	Number o	Number of cycles	Function
	Ва	0	1	1	a 6	a 5	a4	аз	a2	a 1	a ₀	1	8	a a	1	1	(PCL) ← a6-a0
ation	BL p, a	0	0	1	1	1	p4	рз	p2	р1	po	0	E +	p p	2		(PCH) ← p (Note) (PCL) ← a6–a0
Branch operation		1	0	0	a 6	a 5	a 4	аз	a2	a1	ao	2	а	а			
Bran	BLA p	0	0	0	0	0	1	0	0	0	0	0	1	0	2		(PCH) ← p (Note) (PCL) ← (DR2–DR0, A3–A0)
		1	0	0	p4	0	0	рз	p2	p 1	po	2	р	р			
	ВМ а	0	1	0	a 6	a 5	a4	a 3	a 2	a1	a 0	1	а	а	1	1	$ \begin{aligned} & (SP) \leftarrow (SP) + 1 \\ & (SK(SP)) \leftarrow (PC) \\ & (PCH) \leftarrow 2 \\ & (PCL) \leftarrow a6-a0 \end{aligned} $
Subroutine operation	BML p, a	0	0	1	1	0	p 4	рз	p2	р1	po	0	C +	р	2	2	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note)$
outine		1	0	0	a 6	a 5	a 4	аз	a 2	a 1	ao	2	а	а			(PCL) ← a6–a0
Subr	BMLA p	0	0	0	0	1	1	0	0	0	0			0	2	2	(SP) ← (SP) + 1 (SK(SP)) ← (PC)
		1	0	0	p4	0	0	рз	p2	p1	po	2	p	р			(PCH) ← p (Note) (PCL) ← (DR2–DR0,A3–A0)
	RTI	0	0	0	1	0	0	0	1	1	0	0	4	6	1		$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$
Return operation	RT	0	0	0	1	0	0	0	1	0	0	0	4	4	1	2	(PC) ← (SK(SP)) (SP) ← (SP) – 1
Retur	RTS	0	0	0	1	0	0	0	1	0	1	0	4	5	1		(PC) ← (SK(SP)) (SP) ← (SP) – 1

Note : p is 0 to 15 for M34502M2, p is 0 to 31 for M34502M4/E4.

4502 Group INSTRUCTIONS

	_	
Skip condition	Carry flag CY	Datailed description
-	_	Branch within a page : Branches to address a in the identical page.
-	_	Branch out of a page : Branches to address a in page p.
-	_	Branch out of a page: Branches to address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
-	_	Call the subroutine in page 2 : Calls the subroutine at address a in page 2.
_	_	Call the subroutine : Calls the subroutine at address a in page p.
_		Call the subroutine: Calls the subroutine at address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
-	_	Returns from interrupt service routine to main routine. Returns each value of data pointer (X, Y, Z), carry flag, skip status, NOP mode status by the continuous description of the LA/LXY instruction, register A and register B to the states just before interrupt.
_	_	Returns from subroutine to the routine called the subroutine.
Skip at uncondition	_	Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition.

Parameter								ction							r of s	J	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀		ade otat	cimal on	Number of words	Number of cycles	Function
	DI	0	0	0	0	0	0	0	1	0	0	0	0	4	1	1	(INTE) ← 0
	EI	0	0	0	0	0	0	0	1	0	1	0	0	5	1	1	(INTE) ← 1
	SNZ0	0	0	0	0	1	1	1	0	0	0	0	3	8	1	1	V10 = 0: (EXF0) = 1 ? After skipping, (EXF0) ← 0 V10 = 1: SNZ0 = NOP
ation	SNZI0	0	0	0	0	1	1	1	0	1	0	0	3	Α	1	1	I12 = 0 : (INT) = "L" ?
Interrupt operation																	I12 = 1 : (INT) = "H" ?
nterri	TAV1	0	0	0	1	0	1	0	1	0	0	0	5	4	1	1	(A) ← (V1)
_	TV1A	0	0	0	0	1	1	1	1	1	1	0	3	F	1	1	(V1) ← (A)
	TAV2	0	0	0	1	0	1	0	1	0	1	0	5	5	1	1	(A) ← (V2)
	TV2A	0	0	0	0	1	1	1	1	1	0	0	3	E	1	1	(V2) ← (A)
	TAI1	1	0	0	1	0	1	0	0	1	1	2	5	3	1	1	$(A) \leftarrow (I1)$
	TI1A	1	0	0	0	0	1	0	1	1	1	2	1	7	1	1	(I1) ← (A)
	TAW1	1	0	0	1	0	0	1	0	1	1	2	4	В	1	1	(A) ← (W1)
	TW1A	1	0	0	0	0	0	1	1	1	0	2	0	E	1	1	(W1) ← (A)
	TAW2	1	0	0	1	0	0	1	1	0	0	2	4	С	1	1	(A) ← (W2)
	TW2A	1	0	0	0	0	0	1	1	1	1	2	0	F	1	1	(W2) ← (A)
	TAW6	1	0	0	1	0	1	0	0	0	0	2	5	0	1	1	(A) ← (W6)
	TW6A	1	0	0	0	0	1	0	0	1	1	2	1	3	1	1	(W6) ← (A)
	TAB1	1	0	0	1	1	1	0	0	0	0	2	7	0	1	1	(B) ← (T17–T14) (A) ← (T13–T10)
Timer operation	T1AB	1	0	0	0	1	1	0	0	0	0	2	3	0	1	1	$(T17-T14) \leftarrow (B)$ $(R17-R14) \leftarrow (B)$ $(T13-T10) \leftarrow (A)$ $(R13-R10) \leftarrow (A)$
Timer	TAB2	1	0	0	1	1	1	0	0	0	1	2	7	1	1	1	(B) ← (T27–T24) (A) ← (T23–T20)
	T2AB	1	0	0	0	1	1	0	0	0	1	2	3	1	1	1	$(T27-T24) \leftarrow (B)$ $(R27-R24) \leftarrow (B)$ $(T23-T20) \leftarrow (A)$ $(R23-R20) \leftarrow (A)$
	TR1AB	1	0	0	0	1	1	1	1	1	1	2	3	F	1	1	(R17-R14) ← (B) (R13-R10) ← (A)
	SNZT1	1	0	1	0	0	0	0	0	0	0	2	8	0	1	1	V12 = 0: (T1F) = 1 ? After skipping, (T1F) ← 0 V12 = 1: SNZT1 = NOP
	SNZT2	1	0	1	0	0	0	0	0	0	1	2	8	1	1	1	V13 = 0: (T2F) = 1 ? After skipping, (T2F) ← 0 V13 = 1: SNZT2 = NOP

Skip condition	Carry flag CY	Datailed description
_	-	Clears (0) to interrupt enable flag INTE, and disables the interrupt.
_	-	Sets (1) to interrupt enable flag INTE, and enables the interrupt.
V10 = 0: (EXF0) = 1	_	When V10 = 0 : Skips the next instruction when external 0 interrupt request flag EXF0 is "1." After skipping, clears (0) to the EXF0 flag. When the EXF0 flag is "0," executes the next instruction. When V10 = 1 : This instruction is equivalent to the NOP instruction. (V10: bit 0 of interrupt control register V1)
(INT) = "L" However, I12 = 0	_	When I12 = 0: Skips the next instruction when the level of INT pin is "L." Executes the next instruction when the level of INT pin is "H."
(INT) = "H" However, I12 = 1		When I12 = 1: Skips the next instruction when the level of INT pin is "H." Executes the next instruction when the level of INT pin is "L." (I12: bit 2 of interrupt control register I1)
-	-	Transfers the contents of interrupt control register V1 to register A.
_	-	Transfers the contents of register A to interrupt control register V1.
-	-	Transfers the contents of interrupt control register V2 to register A.
_	_	Transfers the contents of register A to interrupt control register V2.
_	_	Transfers the contents of interrupt control register I1 to register A.
-	-	Transfers the contents of register A to interrupt control register I1.
_	-	Transfers the contents of timer control register W1 to register A.
-	-	Transfers the contents of register A to timer control register W1.
_	-	Transfers the contents of timer control register W2 to register A.
_	-	Transfers the contents of register A to timer control register W2.
_	-	Transfers the contents of timer control register W6 to register A.
_	-	Transfers the contents of register A to timer control register W6.
_	_	Transfers the high-order 4 bits (T17–T14) of timer 1 to register B. Transfers the low-order 4 bits (T13–T10) of timer 1 to register A.
_	_	Transfers the contents of register B to the high-order 4 bits of timer 1 and timer 1 reload register R1. Transfers the contents of register A to the low-order 4 bits of timer 1 and timer 1 reload register R1.
-	_	Transfers the high-order 4 bits (T27–T24) of timer 2 to register B. Transfers the low-order 4 bits (T23–T20) of timer 2 to register A.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 2 and timer 2 reload register R2. Transfers the contents of register A to the low-order 4 bits of timer 2 and timer 2 reload register R2.
_	_	Transfers the contents of register B to the high-order 4 bits (R17–R14) of reload register R1, and the contents of register A to the low-order 4 bits (R13–R10) of reload register R1.
V12 = 0: (T1F) = 1	-	When V12 = 0 : Skips the next instruction when timer 1 interrupt request flag T1F is "1." After skipping, clears (0) to the T1F flag. When the T1F flag is "0," executes the next instruction. When V12 = 1 : This instruction is equivalent to the NOP instruction. (V12: bit 2 of interrupt control register V1)
V13 = 0: (T2F) =1	-	When V13 = 0 : Skips the next instruction when timer 1 interrupt request flag T2F is "1." After skipping, clears (0) to the T2F flag. When the T2F flag is "0," executes the next instruction. When V13 = 1 : This instruction is equivalent to the NOP instruction. (V13: bit 3 of interrupt control register V1)

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Parameter Minemonic Tirstruction code Minemonic Tirstruction Minemonic Minemonic	
OPOA	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
OP2A	
IAP3	
OP3A	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
TK0A	
TAK0	
TK1A	
TAK1	
TK2A $\begin{vmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 2 & 1 & 5 & 1 & 1 & (K2) \leftarrow (A) \end{vmatrix}$	
TAK2	
TPU1A 1 0 0 1 1 1 0 2 2 E 1 1 (PU1) ← (A)	
TPU2A 1 0 0 1 1 1 1 1 1 1 1 (PU2) ← (A)	

Skip condition	Carry flag CY	Datailed description
_	_	Transfers the input of port P0 to register A.
_	_	Outputs the contents of register A to port P0.
_	_	Transfers the input of port P1 to register A.
_	-	Outputs the contents of register A to port P1.
-	_	Transfers the input of port P2 to the low-order 2 bits (A1, A0) of register A.
_	_	Outputs the contents of the low-order 2 bits (A1, A0) of register A to port P2.
_	_	Transfers the input of port P3 to the low-order 2 bits (A1, A0) of register A.
_	_	Outputs the contents of the low-order 2 bits (A1, A0) of register A to port P3.
_	_	Sets (1) to port D.
_	_	Clears (0) to a bit of port D specified by register Y.
		olears (b) to a bit of port B specified by register 1.
_	_	Sets (1) to a bit of port D specified by register Y.
(D(Y)) = 0 ? (Y) = 0 to 5	_	Skips the next instruction when a bit of port D specified by register Y is "0." Executes the next instruction when a bit of port D specified by register Y is "1."
_	_	Sets (1) to port C.
_	_	Clears (0) to port C.
(C) = 1	-	Skips the next instruction when the contents of port C is "1." Executes the next instruction when the contents of port C is "0."
_	_	Transfers the contents of port K to the bit 0 (Ao) of register A.
_	_	Outputs the contents of bit 0 (A ₀) of register A to port K.
_	_	Transfers the contents of register A to key-on wakeup control register K0.
_	_	Transfers the contents of key-on wakeup control register K0 to register A.
_	_	Transfers the contents of register A to key-on wakeup control register K1.
_	_	Transfers the contents of key-on wakeup control register K1 to register A.
_	_	Transfers the contents of register A to key-on wakeup control register K2.
_	_	Transfers the contents of key-on wakeup control register K2 to register A.
_	_	Transfers the contents of register A to pull-up control register PU0.
_	_	Transfers the contents of register A to pull-up control register PU1.
_	_	Transfers the contents of register A to pull-up control register PU2.

4502 Group

MD AB	D9 1 1 1 1 1 1 1 0	D8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D7 0 0 0 0 1	D6 1 1 0 0 0	D5 1 0 1 0 0 0 0	D4 1 0 1 0 1 1	D3 1 1 0 0 1	D2 0 0 1 1 1	D1 0 0 0 0 0 0	Do 1 1 1 1 0 0 0	2	7 4 3	9 9	Number 1 1 vords	1	Function In A/D conversion mode (Q13 = 0), (B) \leftarrow (AD9-AD6) (A) \leftarrow (AD5-AD2) In comparator mode (Q13 = 1), (B) \leftarrow (AD7-AD4) (A) \leftarrow (AD3-AD0) (A3, A2) \leftarrow (AD1, AD0) (A1, A0) \leftarrow 0 (AD7-AD4) \leftarrow (B) (AD3-AD0) \leftarrow (A)
AB I A	1 1 1 1	0 0 0 0 0	0 0 0 1	1 0 0 0	0 1 0 0	1 0 0	1 1 0 0	0 0 1 1 1	0 0	1 1 0	2 2	4 3	9	1	1	(B) \leftarrow (AD9-AD6) (A) \leftarrow (AD5-AD2) In comparator mode (Q13 = 1), (B) \leftarrow (AD7-AD4) (A) \leftarrow (AD3-AD0) (A3, A2) \leftarrow (AD1, AD0) (A1, A0) \leftarrow 0 (AD7-AD4) \leftarrow (B)
AB I A	1 1 1 1 1	0 0 0	0 0 0 1	0 1 0 0	1 0 0	1 0 0	1 0 0	0 1 1	0	1	2	3	9	1		$(A1, A0) \leftarrow 0$ $(AD7-AD4) \leftarrow (B)$
I A	1 1 1	0 0 0	0 0 1	1 0 0	0	0	0	1	0	0	2	4			1	
Т	1 1 1	0	0	0	0	0	0	1		-			4	1		
Г	1	0	1	0		-		-	0	0	2	Λ			1	(A) ← (Q1)
	1				0	1	1	1				U	4	1	1	(Q1) ← (A)
AD	-	0	1	0				·	1	1	2	9	F	1	1	(ADF) ← 0 Q13 = 0: A/D conversion starting Q13 = 1: Comparator operation starting
	_				0	0	0	1	1	1	2	8	7	1	1	V22 = 0: (ADF) = 1 ? After skipping, (ADF) \leftarrow 0 V22 = 1: SNZAD = NOP
	U	0	0	0	0	0	0	0	0	0	0	0	0	1	1	(PC) ← (PC) + 1
	0	0	0	0	0	0	0	0	1	0	0	0	2	1		RAM back-up However, voltage drop detection circuit is va
2	0	0	0	0	0	0	1	0	0	0	0	0	8	1	1	RAM back-up
F	0	0	0	1	0	1	1	0	1	1	0	5	В	1	1	POF or POF2 instruction valid
>	0	0	0	0	0	0	0	0	1	1	0	0	3	1	1	(P) = 1 ?
т	1	0	1	0	0	1	1	1	0	0	2	9	С	1	1	Stop of watchdog timer function enabled
Т	1	0	1	0	1	0	0	0	0	0	2	Α	0	1	1	(WDF1) = 1, after skipping, (WDF1) ← 0
к	1	0	1	0	0	1	1	0	1	0	2	9	Α	1	1	Ceramic resonator selected
ĸ	1	0	1	0	0	1	1	0	1	1	2	9	В	1	1	RC oscillation selected
٦	1	0	0	1	0	1	0	0	1	0	2	5	2	1	1	$(A) \leftarrow (MR)$
A	1	0	0	0	0	1	0	1	1	0	2	1	6	1	1	(MR) ← (A)
T K	- (1 1 1 1 1 1	1 0 1 0 1 0 1 0	1 0 1 1 0 1 1 0 1 1 0 0	1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1	1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0	1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1	1 0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 0 1 0	1 0 1 0 1 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0	1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0 1 0	1 0 1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1	1 0 1 0 1 0	1 0 1 0 1 0 0 0 0 0 2 A 1 0 1 0 0 1 1 0 0 0 0 0 2 9 1 0 1 0 0 1 1 0 1 1 2 9 1 0 0 1 0 1 0 1 0 0 1 0 2 5	1 0 1 0 1 0 0 0 0 0 0 2 A 0 1 0 1 0 0 1 1 0 0 0 0 0 0 2 A 0 1 0 1 0 0 1 1 0 1 0 2 9 A 1 0 0 1 0 1 0 1 0 1 0 2 5 2	1 0 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1	1 0 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

Skip condition	Carry flag CY	Datailed description
-	_	In the A/D conversion mode (Q13 = 0), transfers the high-order 4 bits (AD9–AD6) of register AD to register B, and the middle-order 4 bits (AD5–AD2) of register AD to register A. In the comparator mode (Q13 = 1), transfers the high-order 4 bits (AD7–AD4) of comparator register to register B, and the low-order 4 bits (AD3–AD0) of comparator register to register A. (Q13: bit 3 of A/D control register Q1)
-	-	Transfers the low-order 2 bits (AD1, AD0) of register AD to the high-order 2 bits (AD3, AD2) of register A.
-	_	In the A/D conversion mode (Q13 = 0), this instruction is equivalent to the NOP instruction. In the comparator mode (Q13 = 1), transfers the contents of register B to the high-order 4 bits (AD7–AD4) of comparator register, and the contents of register A to the low-order 4 bits (AD3–AD0) of comparator register. (Q13 = bit 3 of A/D control register Q1)
-	-	Transfers the contents of A/D control register Q1 to register A.
_	-	Transfers the contents of register A to A/D control register Q1.
-	_	Clears (0) to A/D conversion completion flag ADF, and the A/D conversion at the A/D conversion mode (Q13 = 0) or the comparator operation at the comparator mode (Q13 = 1) is started. (Q13 = bit 3 of A/D control register Q1)
V22 = 0: (ADF) = 1	_	When V22 = 0 : Skips the next instruction when A/D conversion completion flag ADF is "1." After skipping, clears (0) to the ADF flag. When the ADF flag is "0," executes the next instruction. When V22 = 1 : This instruction is equivalent to the NOP instruction. (V22: bit 2 of interrupt control register V2)
_	-	No operation; Adds 1 to program counter value, and others remain unchanged.
-	_	Puts the system in RAM back-up state by executing the POF instruction after executing the EPOF instruction. However, the voltage drop detection circuit is valid.
-	_	Puts the system in RAM back-up state by executing the POF2 instruction after executing the EPOF instruction. Operations of all functions are stopped.
-	-	Makes the immediate after POF or POF2 instruction valid by executing the EPOF instruction.
(P) = 1	-	Skips the next instruction when the P flag is "1". After skipping, the P flag remains unchanged. Executes the next instruction when the P flag is "0."
-	-	Stops the watchdog timer function by the WRST instruction after executing the DWDT instruction.
(WDF1) = 1	_	Skips the next instruction when watchdog timer flag WDF1 is "1." After skipping, clears (0) to the WDF1 flag. When the WDF1 flag is "0," executes the next instruction. Also, stops the watchdog timer function when executing the WRST instruction immediately after the DWDT instruction.
-	-	Selects the ceramic resonance circuit and stops the on-chip oscillator.
_	-	Selects the RC oscillation circuit and stops the on-chip oscillator.
_	_	Transfers the contents of clock control register MR to register A.
_	-	Transfers the contents of register A to clock control register MR.

INSTRUCTION CODE TABLE

IIVOI	RUC	HON	COL	JE IA	IDLE														
	D9–D4	000000	000001	000010	000011	000100	000101	000110	000111	001000	001001	001010	001011	001100	001101	001110	001111	010000 010111	
D3-D0	Hex. notation	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10–17	18–1F
0000	0	NOP	BLA	SZB 0	BMLA	_	TASP	A 0	LA 0	TABP 0	TABP 16*	_	ı	BML	BML*	BL	BL*	ВМ	В
0001	1	-	CLD	SZB 1	-	_	TAD	A 1	LA 1	TABP 1	TABP 17*	-	_	BML	BML*	BL	BL*	ВМ	В
0010	2	POF	1	SZB 2	-	_	TAX	A 2	LA 2	TABP 2	TABP 18*	-	-	BML	BML*	BL	BL*	вм	В
0011	3	SNZP	INY	SZB 3	_	_	TAZ	A 3	LA 3	TABP 3	TABP 19*	-	-	BML	BML*	BL	BL*	вм	В
0100	4	DI	RD	SZD	-	RT	TAV1	A 4	LA 4	TABP 4	TABP 20*	-	-	BML	BML*	BL	BL*	вм	В
0101	5	EI	SD	SEAn	-	RTS	TAV2	A 5	LA 5	TABP 5	TABP 21*	_	_	BML	BML*	BL	BL*	вм	В
0110	6	RC	-	SEAM	-	RTI	-	A 6	LA 6	TABP 6	TABP 22*	-	_	BML	BML*	BL	BL*	вм	В
0111	7	sc	DEY	_	-	_	_	A 7	LA 7	TABP 7	TABP 23*	-	_	BML	BML*	BL	BL*	вм	В
1000	8	POF2	AND	_	SNZ0	LZ 0	-	A 8	LA 8	TABP 8	TABP 24*	-	_	BML	BML*	BL	BL*	ВМ	В
1001	9	_	OR	TDA	-	LZ 1	_	A 9	LA 9	TABP 9	TABP 25*		_	BML	BML*	BL	BL*	вм	В
1010	А	AM	TEAB	TABE	SNZI0	LZ 2	_	A 10	LA 10	TABP 10	TABP 26*		_	BML	BML*	BL	BL*	вм	В
1011	В	AMC	_	_	-	LZ 3	EPOF	A 11	LA 11	TABP 11	TABP 27*		_	BML	BML*	BL	BL*	вм	В
1100	С	TYA	СМА	_	_	RB 0	SB 0	A 12	LA 12	TABP 12	TABP 28*	_	ı	BML	BML*	BL	BL*	вм	В
1101	D	1	RAR	_	_	RB 1	SB 1	A 13	LA 13	TABP 13	TABP 29*		_	BML	BML*	BL	BL*	вм	В
1110	Е	ТВА	TAB	_	TV2A	RB 2	SB 2	A 14	LA 14	TABP 14	TABP 30*	-	-	BML	BML*	BL	BL*	вм	В
1111	F		TAY	szc	TV1A	RB 3	SB 3	A 15	LA 15	TABP 15	TABP 31*	-	ı	BML	BML*	BL	BL*	вм	В

The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-order 4 bits of the machine language code, and D9–D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

	The	secon	d word
BL	10	0aaa	aaaa
BML	10	0aaa	aaaa
BLA	10	0p00	pppp
BMLA	10	0p00	pppp
SEA	00	0111	nnnn
SZD	00	0010	1011

• * cannot be used in the M34502M2-XXXFP.

4502 Group INSTRUCTIONS

INSTRUCTION CODE TABLE (continued)

IIVƏ I	RUC	HON	COL		ARLE	(con	itinue	ea)										
	09-D4	100000	100001	100010	100011	100100	100101	100110	100111	101000	101001	101010	101011	101100	101101	101110	101111	110000 111111
D3-D0	Hex. notation	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F	30–3F
0000	0	-	-	OP0A	T1AB	_	TAW6	IAP0	TAB1	SNZT1	_	WRST	TMA 0	TAM 0	XAM 0	XAMI 0	XAMD 0	LXY
0001	1	ı	ı	OP1A	T2AB	-	1	IAP1	TAB2	SNZT2	_	_	TMA 1	TAM 1	XAM 1	XAMI 1	XAMD 1	LXY
0010	2	ı	-	OP2A	_	_	TAMR	IAP2	_	_	_	_	TMA 2	TAM 2	XAM 2	XAMI 2	XAMD 2	LXY
0011	3	ı	TW6A	ОР3А	-	ı	TAI1	IAP3	-	_	_	_	TMA 3	TAM 3	XAM 3	XAMI 3	XAMD 3	LXY
0100	4	TQ1A	TK1A	_	1	TAQ1	I	l	_	_	_	_	TMA 4	TAM 4	XAM 4	XAMI 4	XAMD 4	LXY
0101	5	ı	TK2A	_	_	-	-	-	_	_	_	_	TMA 5	TAM 5	XAM 5	XAMI 5	XAMD 5	LXY
0110	6	-	TMRA	-	_	-	TAK0	Ī	_	_	_	-	TMA 6	TAM 6	XAM 6	XAMI 6	XAMD 6	LXY
0111	7	ı	TI1A	_	_	-	_	-	_	SNZAD	_	-	TMA 7	TAM 7	XAM 7	XAMI 7	XAMD 7	LXY
1000	8	-	-	-	_	_	_	-	_	_	_	_	TMA 8	TAM 8	XAM 8	XAMI 8	XAMD 8	LXY
1001	9	-	-	_	TADAB	TALA	TAK1	-	TABAD	SNZCP	_	_	TMA 9	TAM 9	XAM 9	XAMI 9	XAMD 9	LXY
1010	Α	-	_	_	_	_	TAK2	-	_	_	смск	_	TMA 10	TAM 10	XAM 10	XAMI 10	XAMD 10	LXY
1011	В	-	TK0A	_	_	TAW1	_	_	_	_	CRCK	_	TMA 11	TAM 11	XAM 11	XAMI 11	XAMD 11	LXY
1100	С	-	-	_	_	TAW2	_	-	_	RCP	DWDT	_	TMA 12	TAM 12	XAM 12	XAMI 12	XAMD 12	LXY
1101	D	-	-	TPU0A	_	_	_	_	_	SCP	_	_	TMA 13	TAM 13	XAM 13	XAMI 13	XAMD 13	LXY
1110	Е	TW1A	-	TPU1A	_	_	_	_	_	_	_	_	TMA 14	TAM 14	XAM 14	XAMI 14	XAMD 14	LXY
1111	F	TW2A	ОКА	TPU2A	TR1AB	_	_	IAK	_	_	ADST	_	TMA 15	TAM 15	XAM 15	XAMI 15	XAMD 15	LXY

The above table shows the relationship between machine language codes and machine language instructions. D₃–D₀ show the low-order 4 bits of the machine language code, and D₉–D₄ show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

	The	secon	d word
BL	10	0aaa	aaaa
BML	10	0aaa	aaaa
BLA	10	0p00	pppp
BMLA	10	0p00	pppp
SEA	00	0111	nnnn
SZD	00	0010	1011

BUILT-IN PROM VERSION

In addition to the mask ROM versions, the 4502 Group has the One Time PROM versions whose PROMs can only be written to and not be erased.

The built-in PROM version has functions similar to those of the mask ROM versions, but it has PROM mode that enables writing to built-in PROM.

Table 20 shows the product of built-in PROM version. Figure 56 shows the pin configurations of built-in PROM versions.

The One Time PROM version has pin-compatibility with the mask ROM version.

Table 20 Product of built-in PROM version

Part number	PROM size	RAM size	Package	ROM type
T dit Humber	(X 10 bits)	(X 4 bits)	1 dokage	NOW type
M34502E4FP	4096 words	256 words	PRSP0024GA-A	One Time PROM [shipped in blank]

(1) PROM mode

The 4502 Group has a PROM mode in addition to a normal operation mode. It has a function to serially input/output the command codes, addresses, and data required for operation (e.g., read and program) on the built-in PROM using only a few pins. This mode can be selected by setting pins SDA (serial data input/output), SCLK (serial clock input), PGM to "H" after connecting wires as shown in Figure 56 and powering on the VDD pin, and then applying 12 V to the VPP pin.

In the PROM mode, three types of software commands (read, program, and program verify) can be used. Clock-synchronous serial I/O is used, beginning from the LSB (LSB first).

Use the special-perpose serial programmer when performing serial read/program.

As for the serial programmer for the single-chip microcomputer (serial programmer and control software), refer to the "Renesas Microcomputer Development Support Tools" Hompage (http://www.renesas.com/en/tools).

(2) Notes on handling

- ①A high-voltage is used for writing. Take care that overvoltage is
 not applied. Take care especially at turning on the power.
- ②For the One Time PROM version shipped in blank, Renesas corp. does not perform PROM writing test and screening in the assembly process and following processes. In order to improve reliability after writing, performing writing and test according to the flow shown in Figure 55 before using is recommended (Products shipped in blank: PROM contents is not written in factory when shipped).

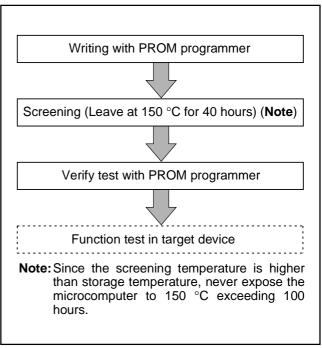


Fig. 55 Flow of writing and test of the product shipped in blank

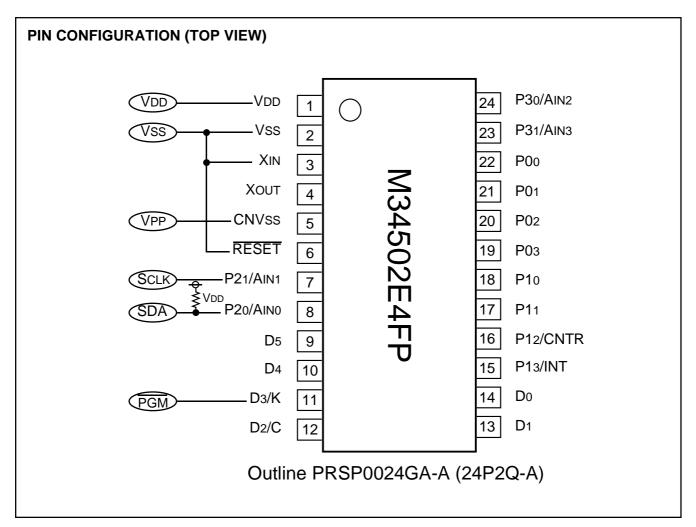


Fig. 56 Pin configuration of built-in PROM version

CHAPTER 2

APPLICATION

- 2.1 I/O pins
- 2.2 Interrupts
- 2.3 Timers
- 2.4 A/D converter
- 2.5 Reset
- 2.6 Voltage drop detection circuit
- 2.7 RAM back-up
- 2.8 Oscillation circuit

2.1 I/O pins

The 4502 Group has the eighteen I/O pins. (Port P12 is also used as CNTR I/O pin, Port P13 is also used as INT input pin, Port P2 is also used as analog input pins AIN0 and AIN1, Port P3 is also used as analog input pins AIN2 and AIN3, Port D2 is also used as Port C, and Port D3 is also used as Port K, respectively). This section describes each port I/O function, related registers, application example using each port function and notes.

2.1.1 I/O ports

(1) Port P0

Port P0 is a 4-bit I/O port.

Port P0 has the key-on wakeup function which turns ON/OFF with register K0 and pull-up transistor which turns ON/OFF with register PU0.

■ Input/output of port P0

Data input to port P0

Set the output latch of specified port P0i (i=0 to 3) to "1" with the **OP0A** instruction. If the output latch is set to "0," "L" level is input.

The state of port P0 is transferred to register A when the IAP0 instruction is executed.

●Data output from port P0

The contents of register A is output to port P0 with the OP0A instruction.

The output structure is an N-channel open-drain.

(2) Port P1

Port P1 is a 4-bit I/O port.

Port P1 has the key-on wakeup function which turns ON/OFF with register K1 and pull-up transistor which turns ON/OFF with register PU1.

■ Input/output of port P1

Data input to port P1

Set the output latch of specified port P1i (i=0 to 3) to "1" with the **OP1A** instruction. If the output latch is set to "0," "L" level is input.

The state of port P1 is transferred to register A when the IAP1 instruction is executed.

●Data output from port P1

The contents of register A is output to port P1 with the OP1A instruction.

The output structure is an N-channel open-drain.

Note: Port P12 is also used as CNTR. Accordingly, when it is used as port P12, set "0" to the timer control register W60.

2.1 I/O pins 4502 Group

(3) Port P2

Port P2 is a 2-bit I/O port.

Also, its key-on wakeup function is switched to ON/OFF by the register K20 and K21, and its pullup transistor function is switched to ON/OFF by the register PU20 and PU21.

■ Input/output of port P2

Data input to port P2

Set the output latch of specified port P2i (i=0, 1) to "1" with the OP2A instruction. If the output latch is set to "0," "L" level is input.

The state of port P2 is transferred to register A when the IAP2 instruction is executed. However, port P2 is 2 bits and A2 and A3 are fixed to "0."

●Data output from port P2

The contents of register A is output to port P2 with the OP2A instruction.

The output structure is an N-channel open-drain.

(4) Port P3

Port P3 is a 2-bit I/O port.

■ Input/output of port P3

Data input to port P3

Set the output latch of specified port P3i (i=0, 1) to "1" with the OP3A instruction. If the output latch is set to "0," "L" level is input.

The state of port P3 is transferred to register A when the IAP3 instruction is executed. However, port P3 is 2 bits and A2 and A3 are fixed to "0."

●Data output from port P3

The contents of register A is output to port P3 with the OP3A instruction.

The output structure is an N-channel open-drain.

(5) Port D

D0-D5 are six independent I/O ports.

Also, as for ports D2 and D3, its key-on wakeup function is switched to ON/OFF by the register K22 and K23, and its pull-up transistor function is switched to ON/OFF by the register PU22 and PU23.

■ Input/output of port D

Each pin of port D has an independent 1-bit wide I/O function. For I/O of ports D0-D5, select one of port D with the register Y of the data pointer first.

Data input to port D

Set the output latch of specified port Di (i = 0 to 5) to "1" with the **SD** instruction.

When the output latch is set to "0," "L" level is input.

When the **SZD** instruction is executed, if the port specified by register Y is "0," the next instruction is skipped. If it is "1," the next instruction is executed.

Data output from port D

Set the output level to the output latch with the ${\bf SD}$ and ${\bf RD}$ instructions.

The state of pin enters the high-impedance state when the SD instruction is executed.

The states of all port D enter the high-impedance state when the CLD instruction is executed.

The state of pin becomes "L" level when the RD instruction is executed.

The output structure is an N-channel open-drain.

Notes 1: When the SD and RD instructions are used, do not set "01102" or more to register Y.

- 2: Port D2 is also used as Port C. Accordingly, when using port D2, set the output latch to "1" with the SCP instruction.
- **3:** Port D₃ is also used as Port K. Accordingly, when using port D₃, set the output latch to "1" with the **OKA** instruction.

2.1 I/O pins 4502 Group

(6) Port C

Port C is a 1-bit I/O port.

■ Input/output of port C

Data input to port C

Set the output latch of specified port C to "1" with the SCP instruction. If the output latch is set to "0," "L" level is input.

When the SNZCP instruction is executed, if the port C is "1," the next instruction is skipped. If it is "0," the next instruction is executed.

●Data output from port C

Set the output level to the output latch with the SCP and RCP instructions.

The state of pin enters the high-impedance state when the SCP instruction is executed.

The state of pin becomes "L" level when the RCP instruction is executed.

The output structure is an N-channel open-drain.

Note: Port C is also used as port D2. Accordingly, when using port C, set the output latch to "1" with the SD instruction.

(7) Port K

Port K is a 1-bit I/O port.

■ Input/output of port K

Data input to port K

Set the output latch of specified port K to "1" with the OKA instruction. If the output latch is set to "0," "L" level is input.

The state of port K is transferred to register A when the IAK instruction is executed.

However, port K is 1 bit and A₁, A₂ and A₃ are fixed to "0."

Data output from port K

The contents of register A is output to port K with the **OKA** instruction.

The output structure is an N-channel open-drain.

Note: Port K is also used as port D3. Accordingly, when using port K, set the output latch to "1" with the SD instruction.

2.1.2 Related registers

(1) Key-on wakeup control register K0

Register K0 controls the ON/OFF of the key-on wakeup function of ports P00–P03. Set the contents of this register through register A with the **TK0A** instruction. The contents of register K0 is transferred to register A with the **TAK0** instruction. Table 2.1.1 shows the key-on wakeup control register K0.

Table 2.1.1 Key-on wakeup control register K0

Key-	on wakeup control register K0	at res	et: 00002	at RAM back-up : state retained	R/W			
K03	Port P03	0	Key-on wak	ceup invalid				
KU3	key-on wakeup control bit	1	Key-on wak	ceup valid				
K02	Port P02	0	Key-on wakeup invalid					
KU2	key-on wakeup control bit	1	Key-on wak	ceup valid				
K01	Port P01	0	Key-on wakeup invalid					
KUT	key-on wakeup control bit	1	Key-on wak	ceup valid				
K00	Port P00	0	Key-on wak	ceup invalid				
	key-on wakeup control bit	1	Key-on wak	ceup valid				

Note: "R" represents read enabled, and "W" represents write enabled.

(2) Pull-up control register PU0

Register PU0 controls the ON/OFF of the ports P00–P03 pull-up transistor. Set the contents of this register through register A with the **TPU0A** instruction. Table 2.1.2 shows the pull-up control register PU0.

Table 2.1.2 Pull-up control register PU0

P	ull-up control register PU0	at res	et: 00002	at RAM back-up : state retained	W
PU03	Port P03	0	Pull-up tran	nsistor OFF	
PU03	pull-up transistor control bit	1	Pull-up tran	nsistor ON	
PU02	Port P02	0	Pull-up tran	nsistor OFF	
PU02	pull-up transistor control bit	1	Pull-up tran	nsistor ON	
PU01	Port P01	0	Pull-up tran	nsistor OFF	
P001	pull-up transistor control bit	1	Pull-up tran	nsistor ON	
PU00	Port P00	0	Pull-up tran	nsistor OFF	
F 000	pull-up transistor control bit	1	Pull-up tran	nsistor ON	

Note: "W" represents write enabled.

2.1 I/O pins 4502 Group

(3) Key-on wakeup control register K1

Register K1 controls the ON/OFF of the key-on wakeup function of ports P10-P13. Set the contents of this register through register A with the TK1A instruction. The contents of register K1 is transferred to register A with the TAK1 instruction. Table 2.1.3 shows the key-on wakeup control register K1.

Table 2.1.3 Key-on wakeup control register K1

Key-	Key-on wakeup control register K1		et: 00002	at RAM back-up : state retained	R/W	
K13	Port P13/INT	0	0 P13 key-on wakeup invalid/INT pin key-on wakeu			
N13	key-on wakeup control bit	1	P13 key-on wakeup valid/INT pin key-on wakeup			
V10	Port P12/CNTR	0	Key-on wakeup invalid			
K12	key-on wakeup control bit	1	Key-on wakeup valid			
K11	Port P11	0	Key-on wakeup invalid			
KII	key-on wakeup control bit	1	Key-on wal	ceup valid		
K10	Port P10	0	Key-on wakeup invalid			
K10	key-on wakeup control bit	1	Key-on wal	ceup valid		

Note: "R" represents read enabled, and "W" represents write enabled.

(4) Pull-up control register PU1

Register PU1 controls the ON/OFF of the ports P10-P13 pull-up transistor. Set the contents of this register through register A with the TPU1A instruction. Table 2.1.4 shows the pull-up control register PU1.

Table 2.1.4 Pull-up control register PU1

Pull-up control register PU1		at reset : 00002		at RAM back-up : state retained	W		
PU13	Port P13/INT	0 Pull-up transistor OFF		nsistor OFF			
PU13	pull-up transistor control bit	1	Pull-up transistor ON				
PU12	Port P12/CNTR	0	Pull-up transistor OFF				
PU12	pull-up transistor control bit	1	Pull-up transistor ON				
PU11	Port P11	0	Pull-up transistor OFF				
PUIT	pull-up transistor control bit	1	Pull-up transistor ON				
PU10	Port P10	0	Pull-up transistor OFF				
	pull-up transistor control bit	1	Pull-up trar	nsistor ON			

Note: "W" represents write enabled.

2.1 I/O pins 4502 Group

(5) Key-on wakeup control register K2

Register K2 controls the ON/OFF of the key-on wakeup function of ports P20, P21, D2/C and D3/K. Set the contents of this register through register A with the TK2A instruction.

The contents of register K2 is transferred to register A with the TAK2 instruction.

Table 2.1.5 shows the key-on wakeup control register K2.

Table 2.1.5 Key-on wakeup control register K2

Key-	Key-on wakeup control register K2		et: 00002	at RAM back-up : state retained	R/W		
K23	Port D3/K	0	0 Key-on wakeup invalid				
N23	key-on wakeup control bit	1	Key-on wakeup valid				
K22	Port D2/C		Key-on wakeup invalid				
N22	key-on wakeup control bit	1	Key-on wakeup valid				
K21	Port P21/AIN1	0	Key-on wakeup invalid				
NZ1	key-on wakeup control bit	1	Key-on wakeup valid				
K20	Port P20/AIN0	0	Key-on wak	ceup invalid			
N20	key-on wakeup control bit	1	Key-on wak	ceup valid			

Note: "R" represents read enabled, and "W" represents write enabled.

(6) Pull-up control register PU2

Register PU2 controls the ON/OFF of the ports P20, P21, D2/C and D3/K pull-up transistor. Set the contents of this register through register A with the TPU2A instruction. Table 2.1.6 shows the pull-up control register PU2.

Table 2.1.6 Pull-up control register PU2

Pull-up control register PU2		at reset : 00002		at RAM back-up : state retained	W		
PU23	Port D ₃ /K	0	0 Pull-up transistor OFF				
PU23	pull-up transistor control bit	1	Pull-up transistor ON				
DLIO	Port D2/C		Pull-up transistor OFF				
PU22	pull-up transistor control bit	1	Pull-up transistor ON				
PU21	Port P21/AIN1	0	Pull-up transistor OFF				
PUZ1	pull-up transistor control bit	1	Pull-up tran	sistor ON			
PU20	Port P20/AIN0	0	Pull-up transistor OFF				
F U20	pull-up transistor control bit	1	Pull-up tran	sistor ON			

Note: "W" represents write enabled.

(7) Timer control register W6

Bit 0 of register W6 selects the P12/CNTR function, and bit 1 controls the CNTR output. Set the contents of this register through register A with the **TW6A** instruction. The contents of register W6 is transferred to register A with the **TAW6** instruction. Table 2.1.7 shows the timer control register W6.

Table 2.1.7 Timer control register W6

Timer control register W6		at reset : 00002		at RAM back-up : state retained	R/W
W63	Not used	0	This bit has no function, but read/write is enabled.		
W62	Not used	0	This bit has no function, but read/write is enabled.		
W61	CNTR output control bit	0	Timer 1 underflow signal divided by 2 output		
VVO1	CNTR output control bit	1	Timer 2 underflow signal divided by 2 output		
W60	P12/CNTR function selection bit	0	P12 (I/O) / CNTR input		
VV 60		1	P12 (input)	/ CNTR input/output	

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} When setting the port, W63-W61 are not used.

2.1.3 Port application examples

(1) Key input by key scan

Key matrix can be set up by connecting keys externally because port D output structure is an N-channel open-drain and port P0 has the pull-up resistor.

Outline: The connecting required external part is just keys.

Specifications: Port D is used to output "L" level and port P0 is used to input 16 keys.

Figure 2.1.1 shows the key input and Figure 2.1.2 shows the key input timing.

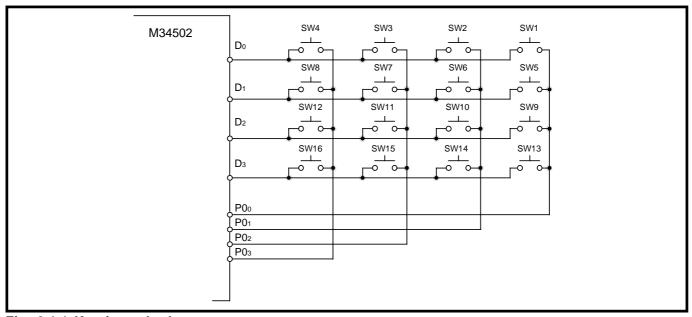


Fig. 2.1.1 Key input by key scan



Fig. 2.1.2 Key scan input timing

2.1.4 Notes on use

(1) Note when an I/O port is used as an input port

Set the output latch to "1" and input the port value before input. If the output latch is set to "0," "L" level can be input.

(2) Noise and latch-up prevention

Connect an approximate 0.1 μ F bypass capacitor directly to the Vss line and the VDD line with the thickest possible wire at the shortest distance, and equalize its wiring in width and length.

The CNVss pin is also used as the VPP pin (programming voltage = 12.5 V) at the One Time PROM version.

Connect the CNVss/VPP pin to Vss through an approximate 5 $k\Omega$ resistor which is connected to the CNVss/VPP pin at the shortest distance.

(3) Note on multifunction

- The input/output of D2, D3, P12 and P13 can be used even when C, K, CNTR (input) and INT are selected.
- The input of P12 can be used even when CNTR (output) is selected.
- The input/output of P20, P21, P30 and P31 can be used even when AIN0, AIN1, AIN2 and AIN3 are selected.

(4) Connection of unused pins

Table 2.1.8 shows the connections of unused pins.

(5) SD, RD instructions

When the SD and RD instructions are used, do not set "01102" or more to register Y.

(6) Analog input pins

When both analog input AIN0-AIN3 and I/O ports P2 and P3 function are used, note the following;

Selection of analog input pins

Even when P20/AIN0, P21/AIN1, P30/AIN2, P31/AIN3 are set to pins for analog input, they continue to function as ports P2 and P3 input/output. Accordingly, when any of them are used as I/O port and others are used as analog input pins, make sure to set the outputs of pins that are set for analog input to "1."

Also, the port input function of the pin functions as an analog input is undefined.

(7) Notes on port P13/INT pin

When the bit 3 of register I1 is cleared, the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.

• When the key-on wakeup function of port P13 is not used (register K13 = "0"), clear bits 2 and 3 of register I1 before system enters to the RAM back-up mode.

	Connections of unused pins	
Pin	Connection	Usage condition
XIN	Connect to Vss.	System operates by the on-chip oscillator. (Note 1)
Xout	Open.	System operates by the external clock.
		(The ceramic resonator is selected with the CMCK instruction.)
		System operates by the RC oscillator.
		(The RC oscillation is selected with the CRCK instruction.)
		System operates by the on-chip oscillator. (Note 1)
D0, D1	Open. (Output latch is set to "1.")	
D4, D5	Open. (Output latch is set to "0.")	
	Connect to Vss.	
D ₂ /C	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)
D ₃ /K	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
	Connect to Vss.	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
P00-P03	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)
	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
	Connect to Vss.	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
P10, P11	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)
P12/CNTR	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
	Connect to Vss.	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
P13/INT	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. The input to INT
		pin is disabled. (Notes 4, 5)
	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
	Connect to Vss.	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
P20/AIN0	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)
P21/AIN1	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
	Connect to Vss.	The pull-up function and the key-on wakeup function are not
		selected. (Notes 2, 3)
P30/AIN2	Open. (Output latch is set to "1.")	
P31/AIN3	Open. (Output latch is set to "0.")	
	Connect to Vss.	
	I.	1

- **Notes 1:** When the ceramic resonator or the RC oscillation is not selected by program, system operates by the on-chip oscillator (internal oscillator).
 - 2: When the pull-up function is left valid, the supply current is increased. Do not select the pull-up function.
 - **3:** When the key-on wakeup function is left valid, the system returns from the RAM back-up state immediately after going into the RAM back-up state. Do not select the key-on wakeup function.
 - 4: When selecting the key-on wakeup function, select also the pull-up function.
 - 5: Clear the bit 3 (I13) of register I1 to "0" to disable to input to INT pin (after reset: I13 = "0")

(Note when connecting to Vss)

• Connect the unused pins to Vss using the thickest wire at the shortest distance against noise.

2.2 Interrupts

The 4502 Group has four interrupt sources: external (INT), timer 1, timer 2, and A/D.

This section describes individual types of interrupts, related registers, application examples using interrupts and notes.

2.2.1 Interrupt functions

(1) External 0 interrupt (INT)

The interrupt request occurs by the change of input level of INT pin.

The interrupt valid waveform can be selected by the bits 1 and 2, and the INT pin input is controlled by the bit 3 of the interrupt control register I1.

■ External 0 interrupt INT processing

When the interrupt is used

The interrupt occurrence is enabled when the bit 0 of the interrupt control register V1 and the interrupt enable flag INTE are set to "1." When the external 0 interrupt occurs, the interrupt processing is executed from address 0 in page 1.

When the interrupt is not used

The interrupt is disabled and the **SNZ0** instruction is valid when the bit 0 of register V1 is set to "0."

(2) Timer 1 interrupt

The interrupt request occurs by the timer 1 underflow.

■ Timer 1 interrupt processing

When the interrupt is used

The interrupt occurrence is enabled when the bit 2 of the interrupt control register V1 and the interrupt enable flag INTE are set to "1." When the timer 1 interrupt occurs, the interrupt processing is executed from address 4 in page 1.

When the interrupt is not used

The interrupt is disabled and the **SNZT1** instruction is valid when the bit 2 of register V1 is set to "0."

(3) Timer 2 interrupt

The interrupt request occurs by the timer 2 underflow.

■ Timer 2 interrupt processing

When the interrupt is used

The interrupt occurrence is enabled when the bit 3 of the interrupt control register V1 and the interrupt enable flag INTE are set to "1." When the timer 2 interrupt occurs, the interrupt processing is executed from address 6 in page 1.

When the interrupt is not used

The interrupt is disabled and the **SNZT2** instruction is valid when the bit 3 of register V1 is set to "0."

(4) A/D interrupt

The interrupt request occurs by the end of the A/D conversion.

■ A/D interrupt processing

• When the interrupt is used

The interrupt occurrence is enabled when the bit 2 of the interrupt control register V2 and the interrupt enable flag INTE are set to "1." When the A/D interrupt occurs, the interrupt processing is executed from address C in page 1.

When the interrupt is not used

The interrupt is disabled and the **SNZAD** instruction is valid when the bit 2 of register V2 is set to "0."

2.2.2 Related registers

(1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable.

Interrupts are enabled when INTE flag is set to "1" with the **EI** instruction and disabled when INTE flag is cleared to "0" with the **DI** instruction.

When any interrupt occurs, the INTE flag is automatically cleared to "0," so that other interrupts are disabled until the **EI** instruction is executed.

Note: The interrupt enabled with the **EI** instruction is performed after the **EI** instruction and one more instruction.

(2) Interrupt control register V1

Interrupt enable bit of external 0, timer 1 and timer 2 are assigned to register V1.

Set the contents of this register through register A with the TV1A instruction.

In addition, the **TAV1** instruction can be used to transfer the contents of register V1 to register A. Table 2.2.1 shows the interrupt control register V1.

Table 2.2.1 Interrupt control register V1

Ir	Interrupt control register V1		et: 00002	at RAM back-up : 00002	R/W	
V13	Timer 2 interrupt anable bit	0	Interrupt dis	Interrupt disabled (SNZT2 instruction is valid)		
V 13	Timer 2 interrupt enable bit	1	Interrupt en	abled (SNZT2 instruction is invalid)	(Note 2)	
V12	Timer 1 interrupt enable bit	0	Interrupt disabled (SNZT1 instruction is valid)			
V 12		1	Interrupt en	abled (SNZT1 instruction is invalid)	(Note 2)	
V11	Not used	0	This bit has	s no function, but read/write is one	hlad	
VII	Not used	1	This bit has no function, but read/write is enabled.			
V10	External 0 interrupt enable bit	0	Interrupt dis	sabled (SNZ0 instruction is valid)		
V 10		1	Interrupt en	abled (SNZ0 instruction is invalid)	(Note 2)	

Notes 1: "R" represents read enabled, and "W" represents write enabled.

- 2: These instructions are equivalent to the NOP instruction.
- 3: When the interrupt is set, V11 is not used.

(3) Interrupt control register V2

Interrupt enable bit of A/D is assigned to register V2.

Set the contents of this register through register A with the TV2A instruction.

In addition, the **TAV2** instruction can be used to transfer the contents of register V2 to register A. Table 2.2.2 shows the interrupt control register V2.

Table 2.2.2 Interrupt control register V2

Interrupt control register V2		at reset : 00002		at RAM back-up : 00002	R/W
V23	Not used	0	This bit has no function, but read/write is enab		oled.
	A/D interrupt enable bit	0	Interrupt disabled (SNZAD instruction is valid)		
V Z 2		1	Interrupt enabled (SNZAD instruction is invalid) (Note 2		
V21	Not used	0	This bit has	s no function, but read/write is enab	oled.
		0			
V20	Not used	1	This bit has no function, but read/write is enabled		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

- 2: This instruction is equivalent to the NOP instruction.
- 3: When the interrupt is set, V23, V21 and V20 are not used.

(4) Interrupt request flag

The activated condition for each interrupt is examined. Each interrupt request flag is set to "1" when the activated condition is satisfied, even if the interrupt is disabled by the INTE flag or its interrupt enable bit.

Each interrupt request flag is cleared to "0" when either;

- •an interrupt occurs, or
- •the next instruction is skipped with a skip instruction.

(5) Interrupt control register I1

The INT pin timer 1 control enable bit is assigned to bit 0, INT pin edge detection circuit control bit is assigned to bit 1, interrupt valid waveform for INT pin/return level selection bit is assigned to bit 2 and INT pin input control bit is assigned to bit 3.

Set the contents of this register through register A with the TI1A instruction.

In addition, the **TAI1** instruction can be used to transfer the contents of register I1 to register A. Table 2.2.3 shows the interrupt control register I1.

Table 2.2.3 Interrupt control register I1

1	Interrupt control register I1		et: 00002	at RAM back-up : state retained	R/W	
	INT pin input control bit (Note 2)	0	INT pin inp	ut disabled		
113	in pin input control bit (Note 2)	1	INT pin inp	ut enabled		
	Interrupt valid waveform for INT pin/return level selection bit (Note 2)	0	Falling wav	eform ("L" level of INT pin is recogni	ized with	
110		0	the SNZIO instruction)/"L" level			
112		1	Rising waveform ("H" level of INT pin is recognized with			
			the SNZIO	instruction)/"H" level		
	INT pin edge detection circuit	0	One-sided	edge detected		
111	control bit	1	Both edges	Both edges detected		
I10	INT pin	0	Disabled			
	timer 1 control enable bit	1	Enabled	Enabled		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set. Accordingly, clear EXF0 flag with the SNZ0 instruction when the bit 0 (V10) of register V1 to "0". In this time, set the NOP instruction after the SNZ0 instruction, for the case when a skip is performed with the SNZ0 instruction.

2.2.3 Interrupt application examples

(1) INT interrupt

The INT pin is used for external 0 interrupt, of which valid waveforms can be chosen, which can recognize the change of both edges ("H" \rightarrow "L" or "L" \rightarrow "H").

Outline: An external 0 interrupt can be used by dealing with the change of edge ("H"→"L" or "L"→"H") in both directions as a trigger.

Specifications: An interrupt occurs by the change of an external signals edge ("H" \rightarrow "L" or "L" \rightarrow "H").

Figure 2.2.1 shows an operation example of an external 0 interrupt, and Figure 2.2.2 shows a setting example of an external 0 interrupt.

(2) Timer 1 interrupt

Constant period interrupts by a setting value to timer 1 can be used.

Outline: The constant period interrupts by the timer 1 underflow signal can be used.

Specifications: Prescaler and timer 1 divide the system clock frequency f(XIN) = 4.0 MHz, and the timer 1 interrupt occurs every 1 ms.

Figure 2.2.3 shows a setting example of the timer 1 constant period interrupt.

(3) Timer 2 interrupt

Constant period interrupts by a setting value to timer 2 can be used.

Outline: The constant period interrupts by the timer 2 underflow signal can be used.

Specifications: Timer 2 and prescaler divide the system clock frequency (= 4.0 MHz), and the timer 2 interrupt occurs every about 1 ms.

Figure 2.2.4 shows a setting example of the timer 2 constant period interrupt.

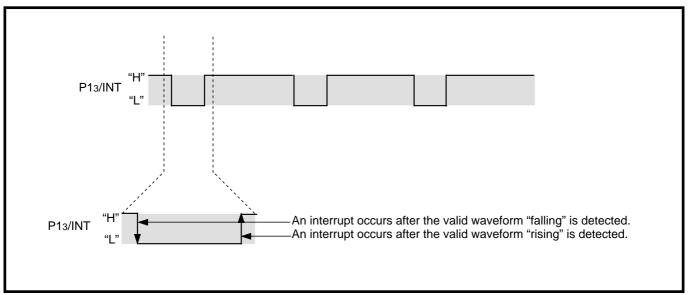


Fig. 2.2.1 INT interrupt operation example

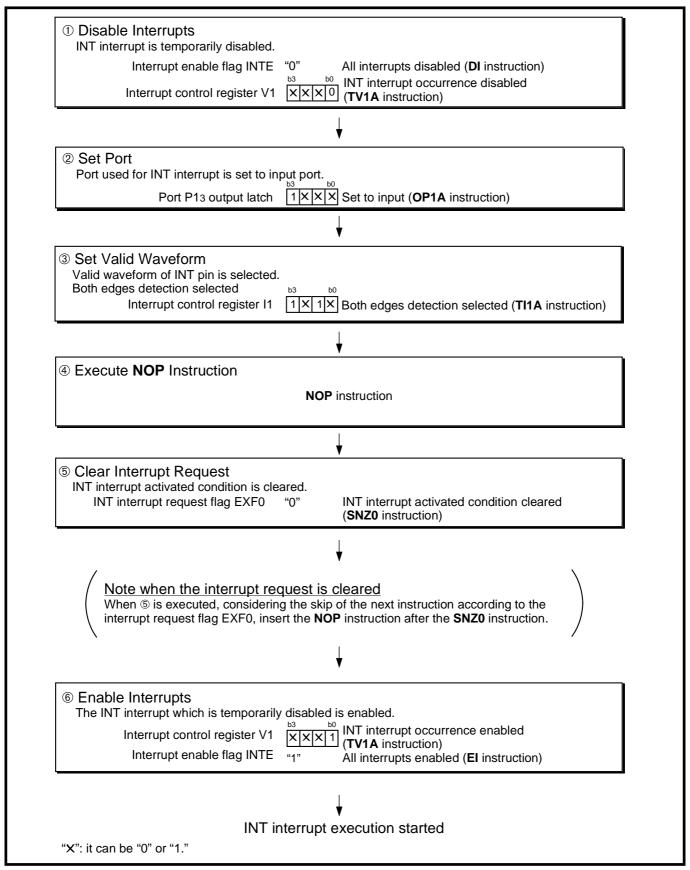


Fig. 2.2.2 INT interrupt setting example

Note: The valid waveforms causing the interrupt must be retained at their level for 4 cycles or more of system clock.

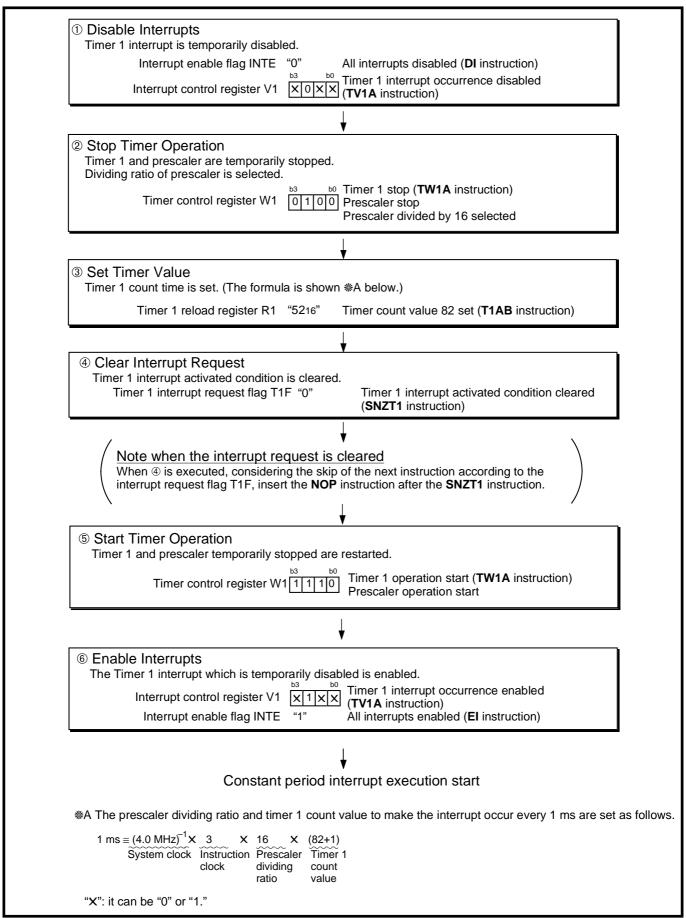


Fig. 2.2.3 Timer 1 constant period interrupt setting example

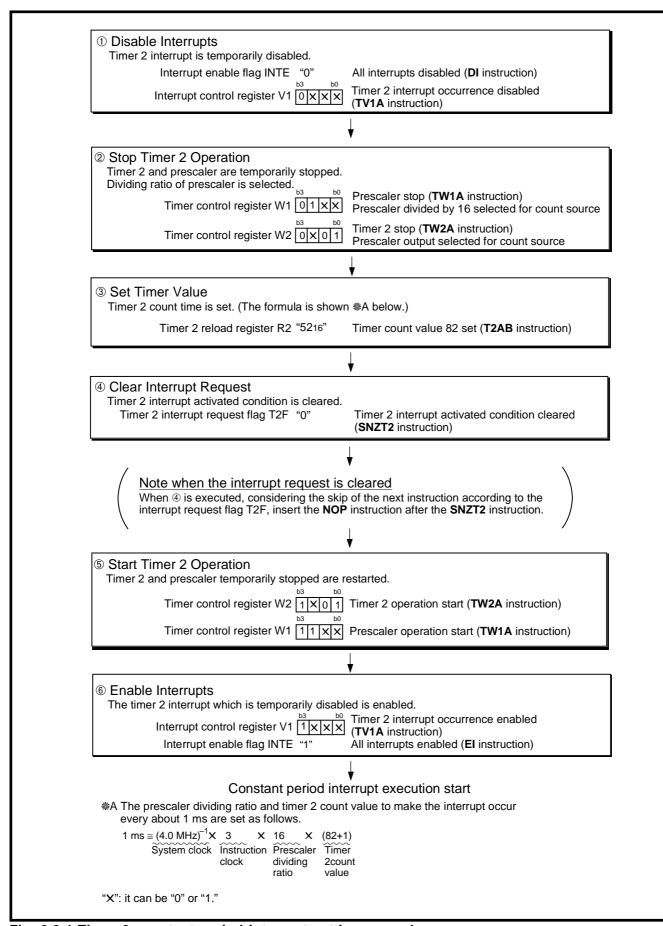


Fig. 2.2.4 Timer 2 constant period interrupt setting example

2.2.4 Notes on use

(1) Setting of INT interrupt valid waveform

Set a value to the bit 2 of register I1, and execute the **SNZ0** instruction to clear the EXF0 flag to "0" after executing at least one instruction.

Depending on the input state of P13/INT pin, the external interrupt request flag (EXF0) may be set to "1" when the interrupt valid waveform is changed.

(2) Setting of INT pin input control

Set a value to the bit 3 of register I1, and execute the **SNZ0** instruction to clear the EXF0 flag to "0" after executing at least one instruction.

Depending on the input state of P13/INT pin, the external interrupt request flag (EXF0) may be set to "1" when the interrupt valid waveform is changed.

(3) Multiple interrupts

Multiple interrupts cannot be used in the 4502 Group.

(4) Notes on interrupt processing

When the interrupt occurs, at the same time, the interrupt enable flag INTE is cleared to "0" (interrupt disable state). In order to enable the interrupt at the same time when system returns from the interrupt, write **EI** and **RTI** instructions continuously.

(5) P13/INT pin

The P13/INT pin need not be selected the external interrupt input INT function or the normal output port P13 function. However, the EXF0 flag is set to "1" when a valid waveform is input to INT pin even if it is used as an I/O port P13.

(6) Power down instruction

Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction.

2-22

4502 Group 2.3 Timers

2.3 Timers

The 4502 Group has two 8-bit timers (each has a reload register) and a 16-bit fixed dividing frequency timer which has the watchdog timer function.

This section describes individual types of timers, related registers, application examples using timers and notes.

2.3.1 Timer functions

- (1) Timer 1
 - **■** Timer operation

(Timer 1 has the timer 1 count start trigger function from P13/INT pin input)

- (2) Timer 2
 - **■** Timer operation
- (3) 16-bit timer

■ Watchdog function

Watchdog timer provides a method to reset the system when a program run-away occurs. System operates after it is released from reset. When the timer count value underflows, the WDF1 flag is set to "1." Then, if the **WRST** instruction is never executed until timer WDT counts 65534, WDF2 flag is set to "1," and system reset occurs.

When the **DWDT** instruction and the **WRST** instruction are executed continuously, the watchdog timer function is invalid.

The **WRST** instruction has the skip function. When the **WRST** instruction is executed while the WDF1 flag is "1", the WDF1 flag is cleared to "0" and the next instruction is skipped.

2.3.2 Related registers

(1) Interrupt control register V1

The external 0 interrupt enable bit is assigned to bit 0, timer 1 interrupt enable bit is assigned to bit 2, and the timer 2 interrupt enable bit is assigned to bit 3.

Set the contents of this register through register A with the **TV1A** instruction. The **TAV1** instruction can be used to transfer the contents of register V1 to register A.

Table 2.3.1 shows the interrupt control register V1.

Table 2.3.1 Interrupt control register V1

In	Interrupt control register V1		et: 00002	at RAM back-up : 00002 R/W			
\/10	V4a Timon Cinton of a ship bit		Interrupt dis	sabled (SNZT2 instruction is valid)			
V 13	V13 Timer 2 interrupt enable bit	1	Interrupt en	Interrupt enabled (SNZT2 instruction is invalid) (Note 2			
V12	Timer 1 interrupt enable bit	0	Interrupt dis	sabled (SNZT1 instruction is valid)			
V 12		1	Interrupt en	abled (SNZT1 instruction is invalid) (Note 2)			
V11	Not used	0	This hit has no function, but read/write is enabled				
VII	Not used	1	This bit has no function, but read/write is enabled.				
V10	External 0 interrupt enable bit	0	Interrupt dis	sabled (SNZ0 instruction is valid)			
V 10		1	Interrupt en	abled (SNZ0 instruction is invalid) (Note 2)			

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: These instructions are equivalent to the NOP instruction.

3: When timer is used, V11 and V10 are not used.

(2) Timer control register W1

The timer 1 count start synchronous circuit control bit is assigned to bit 0, the timer 1 control bit is assigned to bit 1, the prescaler dividing ratio selection bit is assigned to bit 2, and the prescaler control bit is assigned to bit 3.

Set the contents of this register through register A with the **TW1A** instruction. The **TAW1** instruction can be used to transfer the contents of register W1 to register A.

Table 2.3.2 shows the timer control register W1.

Table 2.3.2 Timer control register W1

Timer control register W1		at reset : 00002		at RAM back-up : 00002	R/W	
W13	Draggalar central hit	0	Stop (state	initialized)	•	
	Prescaler control bit	1	Operating			
\\/10	Prescaler dividing ratio selection		Instruction clock divided by 4			
W12	bit	1	Instruction clock divided by 16			
W11	Times 4 control hit	0	Stop (state	retained)		
VV I 1	Timer 1 control bit	1	Operating			
W10	Timer 1 count start synchronous	0	Count start	synchronous circuit not selected		
VV 10	circuit control bit	1	Count start synchronous circuit selected			

Note: "R" represents read enabled, and "W" represents write enabled.

2-24

4502 Group 2.3 Timers

(3) Timer control register W2

The timer 2 count source selection bits are assigned to bits 0 and 1, the timer 1 count auto-stop circuit control bit is assigned to bit 2 and the timer 2 control bit is assigned to bit 3.

Set the contents of this register through register A with the **TW2A** instruction. The **TAW2** instruction can be used to transfer the contents of register W2 to register A.

Table 2.3.3 shows the timer control register W2.

Table 2.3.3 Timer control register W2

Timer control register W2		at reset : 000		et: 00002 at RAM back-up: state retain	ed	R/W
MO2 7: 0 11:			0	Stop (state retained)	·	
W23 Timer 2 control bit	Timer 2 control bit	1		Operating		
W22	Timer 1 count auto-stop circuit	0		Count auto-stop circuit not selected		
V V Z Z	control bit (Note 2)		1	Count auto-stop circuit selected		
		W21	W20	Count source		
W21	Times 0 and 1 and	0	0	Timer 1 underflow signal		
-	Timer 2 count source selection bits	0	1	Prescaler output (ORCLK)		
W20		1	0	CNTR input		
VV20		1	1	System clock		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

(4) Timer control register W6

The P12/CNTR function selection bit is assigned to bit 0 and the CNTR output control bit is assigned to bit 1.

Set the contents of this register through register A with the **TW6A** instruction. The **TAW6** instruction can be used to transfer the contents of register W6 to register A.

Table 2.3.4 shows the timer control register W6.

Table 2.3.4 Timer control register W6

Timer control register W6		at reset : 00002		at RAM back-up : state retained	R/W
W63	Not used	0	This bit has no function, but read/write is enabled.		
		1			
W62	Not used	0	This bit has no function, but read/write is enabled.		
		1			
W61	CNTR output control bit	0	Timer 1 underflow signal divided by 2 output		
		1	Timer 2 underflow signal divided by 2 output		
W60	P12/CNTR function selection bit	0	P12 (I/O) / CNTR input (Note 2)		
		1	P12 (input) / CNTR I/O (Note 2)		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

- 2: The CNTR input is valid only when the CNTR input is selected for the timer 2 count source.
- 3: When timer is used, W63 and W62 are not used.

^{2:} This function is valid only when the timer 1 count start synchronous circuit is selected.

2.3.3 Timer application examples

(1) Timer operation: measurement of constant period

The constant period by the setting timer count value can be measured.

Outline: The constant period by the timer 1 underflow signal can be measured.

Specifications: Timer 1 and prescaler divides the system clock frequency f(XIN) = 4.0 MHz, and the timer 1 interrupt request occurs every 3 ms.

Figure 2.3.3 shows the setting example of the constant period measurement.

(2) CNTR output operation: piezoelectric buzzer output

Outline: Square wave output from timer 1 can be used for piezoelectric buzzer output.

Specifications: 4 kHz square wave is output from the CNTR pin at system clock frequency f(XIN) = 4.0 MHz. Also, timer 1 interrupt occurs simultaneously.

Figure 2.3.1 shows the peripheral circuit example, and Figure 2.3.4 shows the setting example of CNTR output.

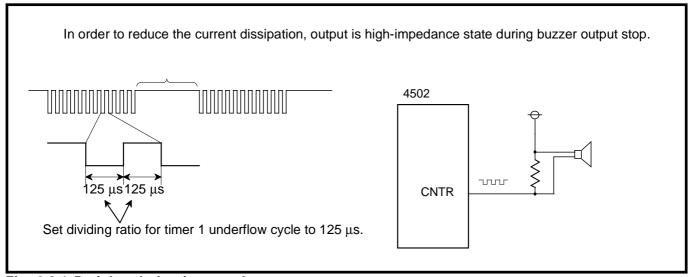


Fig. 2.3.1 Peripheral circuit example

(3) CNTR input operation: event count

Outline: Count operation can be performed by using the signal (falling waveform) input from CNTR pin as the event.

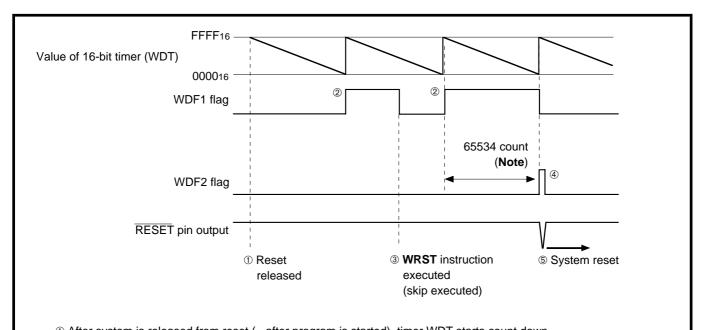
Specifications: The low-frequency pulse from external as the timer 2 count source is input to CNTR pin, and the timer 2 interrupt request occurs every 100 counts.

Figure 2.3.5 shows the setting example of CNTR input.

(4) Timer operation: timer start by external input

Outline: The constant period can be measured by external input.

Specifications: System clock frequency f(XIN) = 4 MHz and timer 1 operates by INT input as a trigger and an interrupt occurs after 1 ms.


Figure 2.3.6 shows the setting example of timer start.

(5) Watchdog timer

Watchdog timer provides a method to reset the system when a program run-away occurs. Accordingly, when the watchdog timer function is set to be valid, execute the **WRST** instruction at a certain period which consists of timer 16-bit timers' 65534 counts or less (execute **WRST** instruction at a cycle of 65534 machine cycles or less).

Outline: Execute the WRST instruction in 16-bit timer's 65534 counts at the normal operation. If a program runs incorrectly, the WRST instruction is not executed and system reset occurs. Specifications: System clock frequency f(XIN) = 4.0 MHz is used, and program run-away is detected by executing the WRST instruction in 49 ms.

Figure 2.3.2 shows the watchdog timer function, and Figure 2.3.7 shows the example of watchdog timer.

- $\textcircled{$\mathbb{O}$ After system is released from reset (= after program is started), timer WDT starts count down. } \\$
- ② When timer WDT underflow occurs, WDF1 flag is set to "1."
- When the WRST instruction is executed, WDF1 flag is cleared to "0," the next instruction is skipped.
- When timer WDT underflow occurs while WDF1 flag is "1," WDF2 flag is set to "1" and the watchdog reset signal is output.
- ⑤ The output transistor of RESET pin is turned "ON" by the watchdog reset signal and system reset is executed.

Note: The number of count is equal to the number of machine cycle because the count source of watchdog timer is the instruction clock.

Fig. 2.3.2 Watchdog timer function

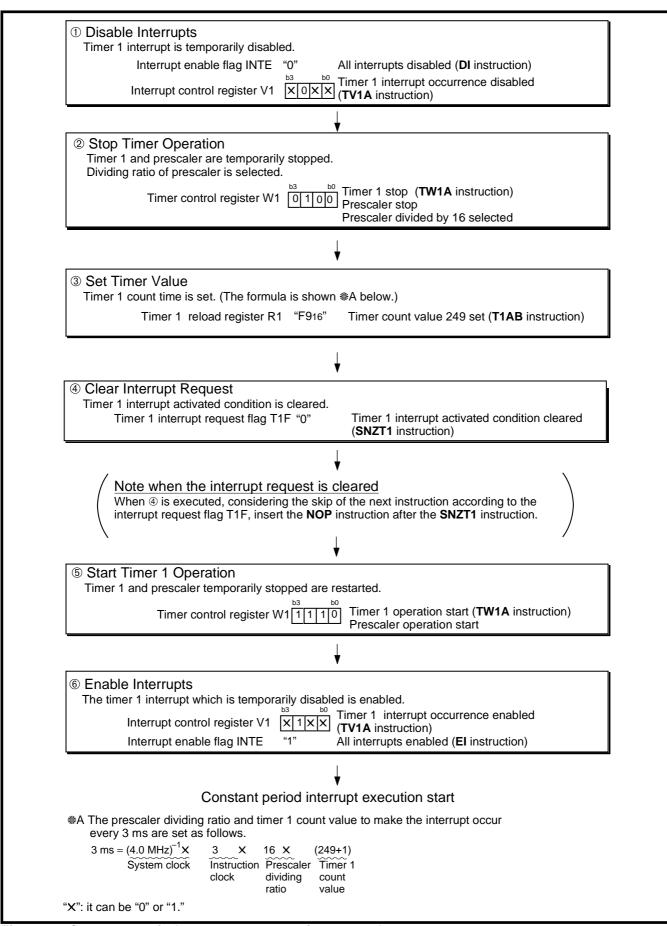


Fig. 2.3.3 Constant period measurement setting example

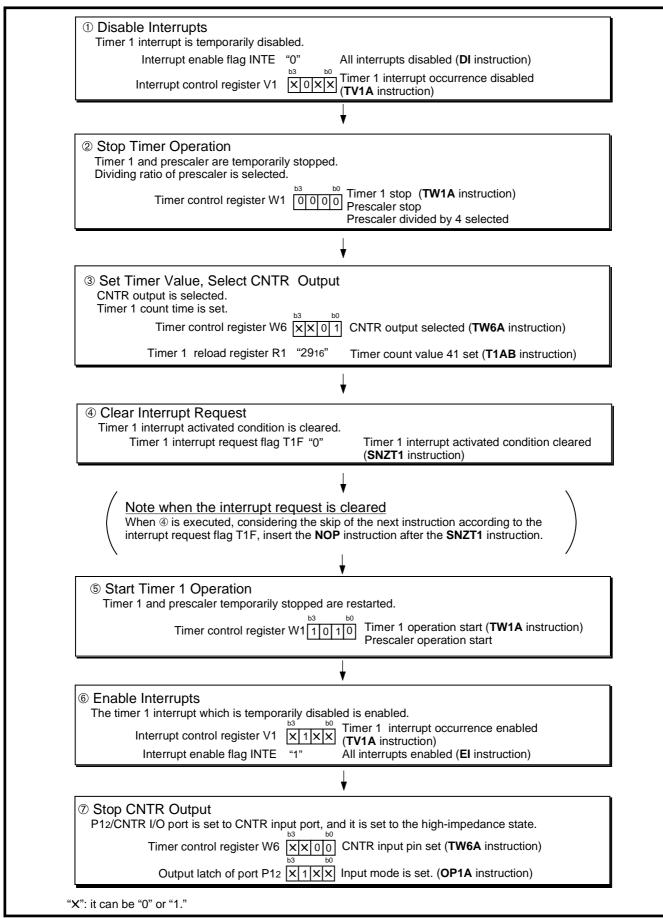


Fig. 2.3.4 CNTR output setting example

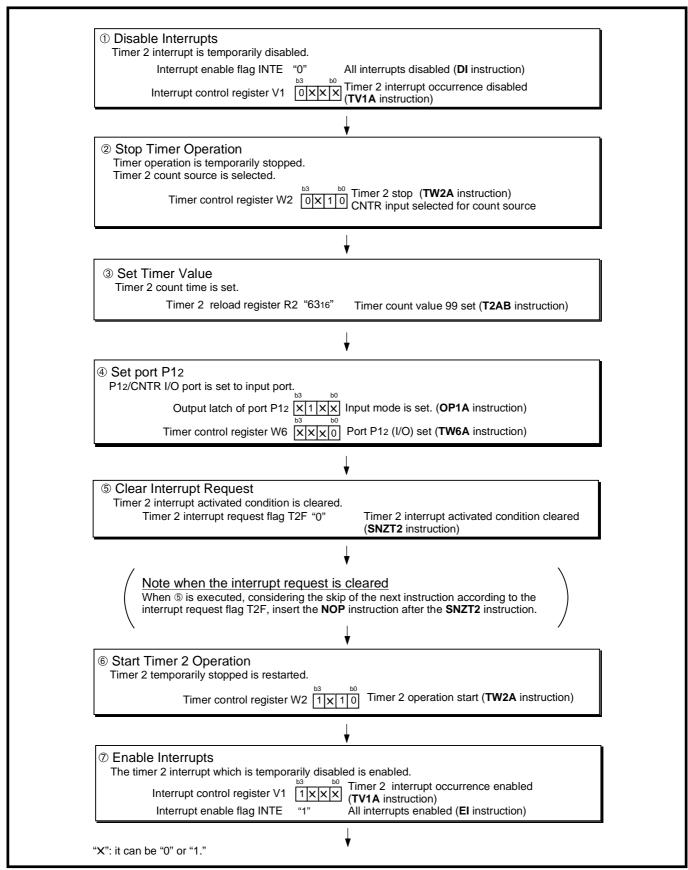


Fig. 2.3.5 CNTR input setting example

However, specify the pulse width input to CNTR pin. Refer to section "2.3.4 Notes on use" for the timer external input period condition.

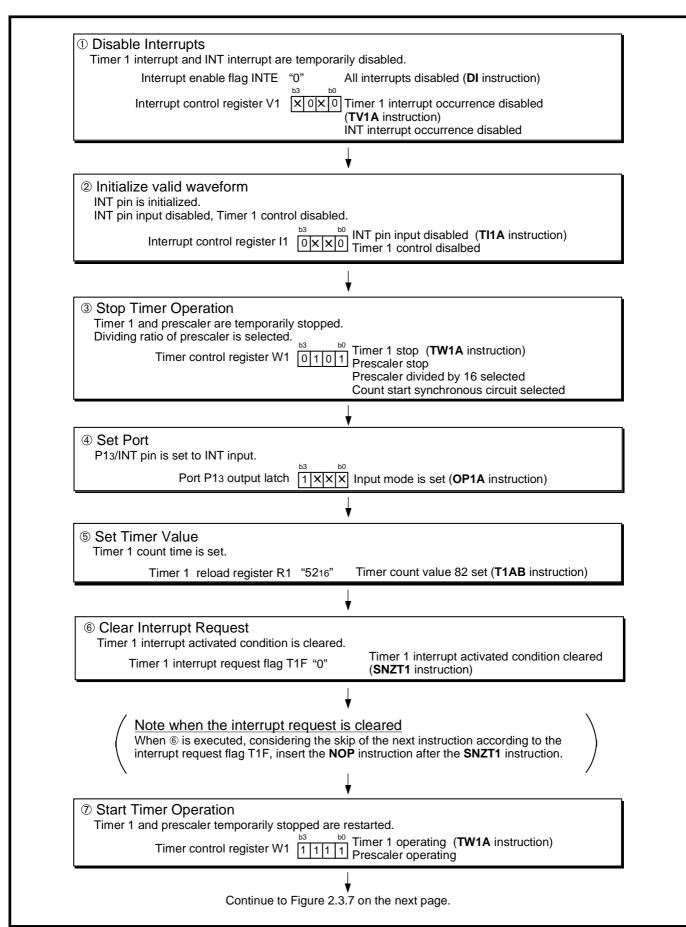


Fig. 2.3.6 Timer start by external input setting example (1)

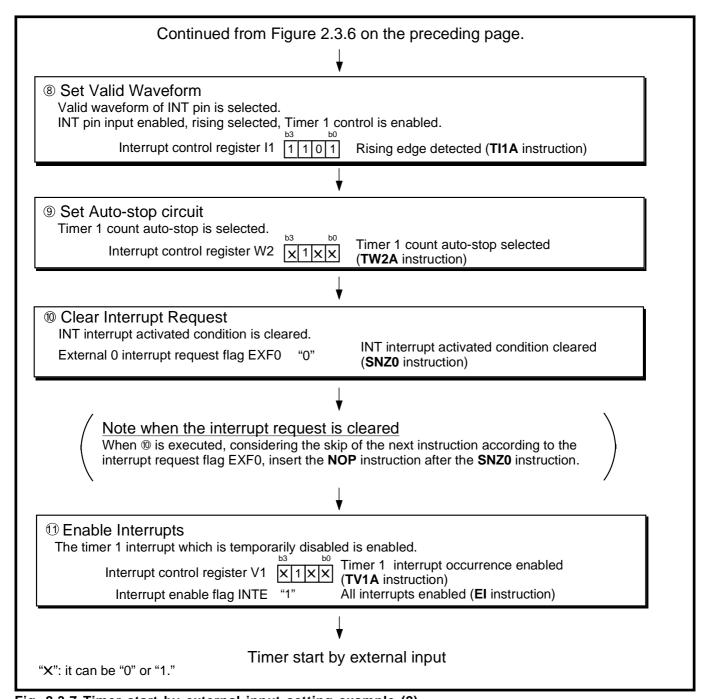


Fig. 2.3.7 Timer start by external input setting example (2)

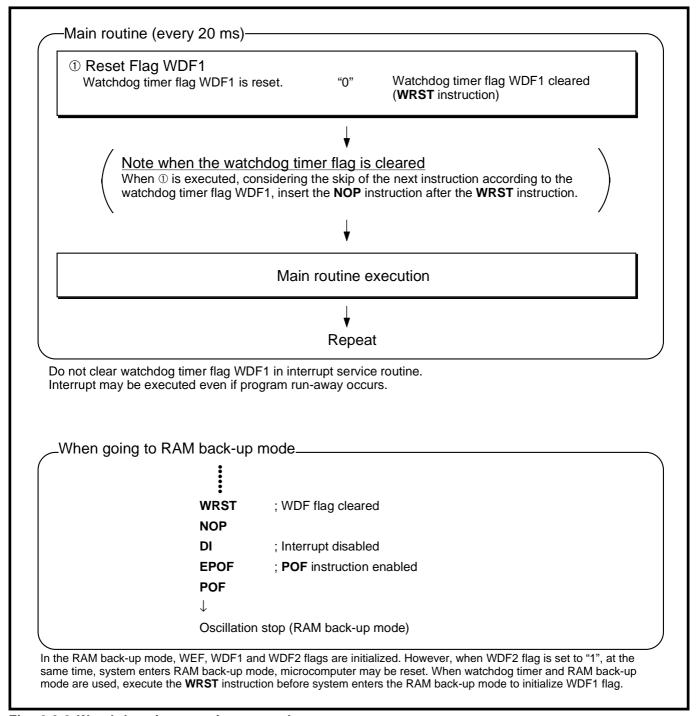


Fig. 2.3.8 Watchdog timer setting example

2.3.4 Notes on use

(1) Prescaler

Stop the prescaler operation to change its frequency dividing ratio.

(2) Count source

Stop timer 1 or 2 counting to change its count source.

(3) Reading the count values

Stop timer 1 or 2 counting and then execute the TAB1 or TAB2 instruction to read its data.

(4) Writing to the timer

Stop timer 1 or 2 counting and then execute the T1AB or T2AB instruction to write its data.

(5) Writing to reload register R1

When writing data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflow.

(6) Timer 1 and timer 2 count start timing and count time when operation starts

Count starts from the first rising edge of the count source (2) after timer 1 and timer 2 operations start (1).

Time to first underflow (3) is shorter (for up to 1 period of the count source) than time among next underflow (4) by the timing to start the timer and count source operations after count starts. When selecting CNTR input as the count source of timer 2, timer 2 operates synchronizing with the falling edge of CNTR input.



Fig. 2.3.9 Timer count start timing and count time when operation starts (T1, T2)

(7) Watchdog timer

- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, execute the **DWDT** instruction and the **WRST** instruction continuously, and clear the WEF flag to "0" to stop the watchdog timer function.
- The watchdog timer function is valid after system is returned from the RAM back-up. When not using the watchdog timer function, execute the **DWDT** instruction and the **WRST** instruction continuously every system is returned from the RAM back-up, and stop the watchdog timer function.

(8) Pulse width input to CNTR pin

Table 2.3.5 shows the recommended operating condition of pulse width input to CNTR pin.

Table 2.3.5 Recommended operating condition of pulse width input to CNTR pin

Parameter	Condition		Unit			
r didilietei	Condition	Min.	Тур.	Max.	Oilit	
Timer external input period	High-speed mode	3/f(XIN)				
("H" and "L" pulse width)	Middle-speed mode	6/f(XIN)			6	
	Low-speed mode	12/f(XIN)			S	
	Default mode	24/f(XIN)				

2.4 A/D converter

The 4502 Group has a 4-channel A/D converter with the 10-bit successive comparison method.

This A/D converter can also be used as a comparator to compare analog voltages input from the analog input pin with preset values.

This section describes the related registers, application examples using the A/D converter and notes.

Figure 2.4.1 shows the A/D converter block diagram.

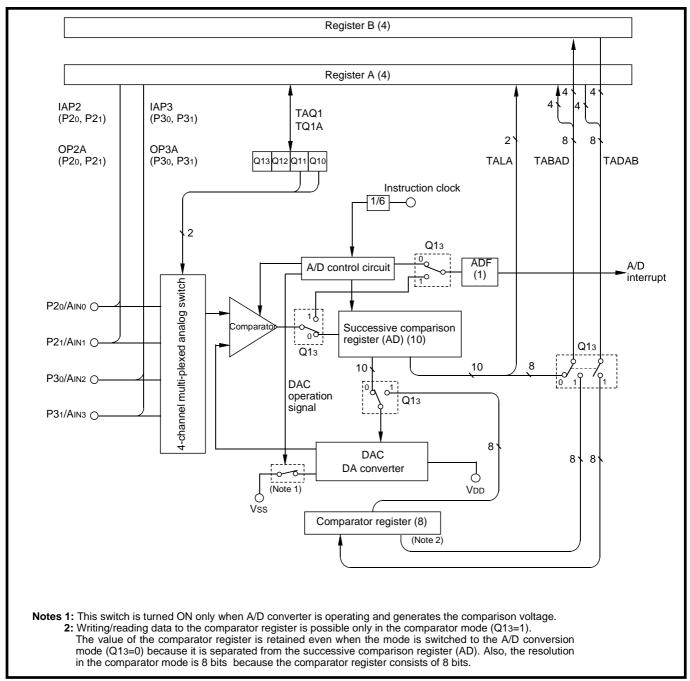


Fig. 2.4.1 A/D converter structure

2.4.1 Related registers

(1) A/D control register Q1

A/D operation mode control bit and analog input pin selection bits are assigned to register Q1. Set the contents of this register through register A with the **TQ1A** instruction. The **TAQ1** instruction can be used to transfer the contents of register Q1 to register A.

Table 2.4.1 shows the A/D control register Q1.

Table 2.4.1 A/D control register Q1

A/D control register Q1		at reset		et: 00002 at RAM back-up: state retained RA	/W
Q13	A/D operation mode control bit	0		A/D conversion mode	
<u> </u>	Detailor mode control bit	,	1	Comparator mode	
Q12	Not used		0	This bit has no function, but read/write is enabled.	
Q1Z	Q12 Not used		1	This bit has no function, but read/write is enabled	
		Q11	Q1 0	Selected pins	
Q11		0	0	AIN0	
	Analog input pin selection bits	0	1	AIN1	
Q10		1	0	AIN2	
		1	1	AIN3	

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2.4.2 A/D converter application examples

(1) A/D conversion mode

Outline: Analog input signal from a sensor can be converted into digital values.

Specifications: Analog voltage values from a sensor is converted into digital values by using a 10-bit successive comparison method. Use the AINO pin for this analog input.

Figure 2.4.2 shows the A/D conversion mode setting example.

^{2:} When A/D converter is used, Q12 is not used.

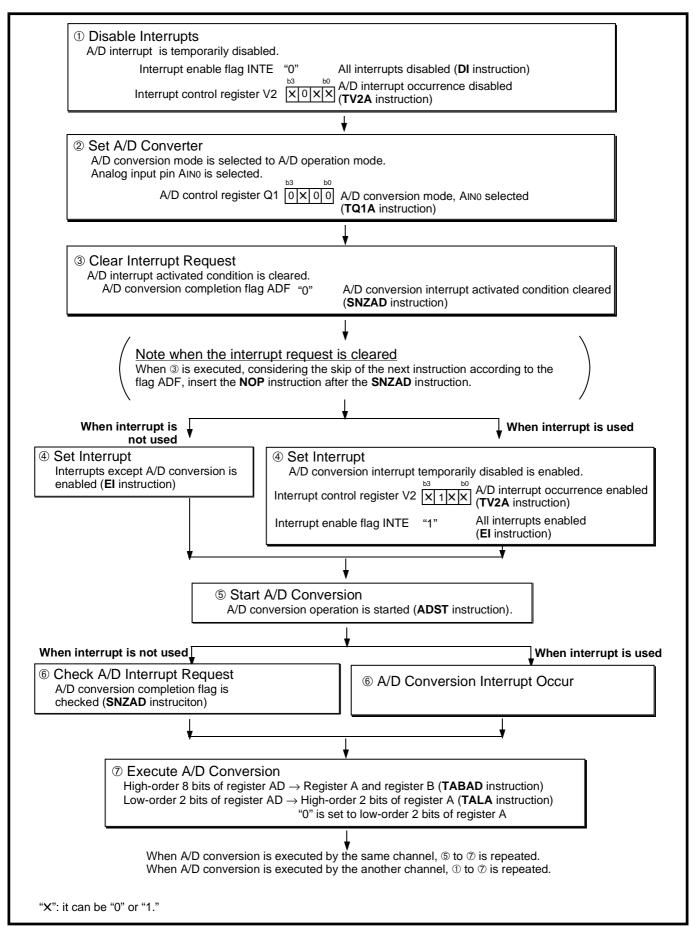
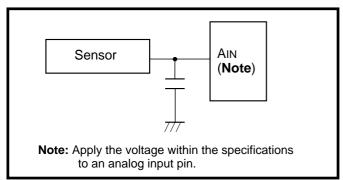


Fig. 2.4.2 A/D conversion mode setting example

2.4.3 Notes on use

(1) Note when the A/D conversion starts again


When the A/D conversion starts again with the **ADST** instruction during A/D conversion, the previous input data is invalidated and the A/D conversion starts again.

(2) A/D converter-1

Each analog input pin is equipped with a capacitor which is used to compare the analog voltage. Accordingly, when the analog voltage is input from the circuit with high-impedance and, charge/ discharge noise is generated and the sufficient A/D accuracy may not be obtained. Therefore, reduce the impedance or, connect a capacitor (0.01 μ F to 1 μ F) to analog input pins.

Figure 2.4.3 shows the analog input external circuit example-1.

When the overvoltage applied to the A/D conversion circuit may occur, connect an external circuit in order to keep the voltage within the rated range as shown the Figure 2.4.4. In addition, test the application products sufficiently.

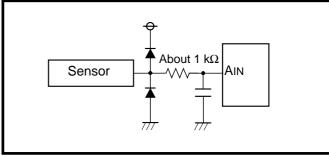


Fig. 2.4.4 Analog input external circuit example-2

Fig. 2.4.3 Analog input external circuit example-1

(3) Notes for the use of A/D conversion 2

When the operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode with bit 3 of register Q1 in a program, be careful about the following notes.

- Clear bit 2 of register V2 to "0" to change the operating mode of the A/D converter from the comparator mode to the A/D conversion mode with bit 3 of register Q1 (refer to Figure 2.4.5①).
- The A/D conversion completion flag (ADF) may be set when the operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a value to bit 3 of register Q1, and execute the **SNZAD** instruction to clear the ADF flag.

Do not change the operating mode (both A/D conversion mode and comparator mode) of A/D converter with bit 3 of register Q1 during operating the A/D converter.

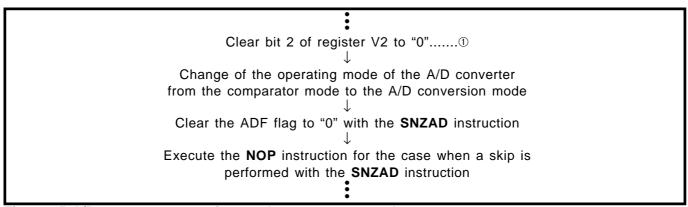


Fig. 2.4.5 A/D converter operating mode program example

2-38

4502 Group 2.4 A/D converter

(4) A/D converter is used at the comparator mode

The analog input voltage is higher than the comparison voltage as a result of comparison, the contents of ADF flag retains "0," not set to "1."

In this case, the A/D interrupt does not occur even when the usage of the A/D interrupt is enabled. Accordingly, consider the time until the comparator operation is completed, and examine the state of ADF flag by software. The comparator operation is completed after 8 machine cycles.

(5) Analog input pins

Even when P20/AIN0, P21/AIN1, P30/AIN2 and P31/AIN3 are set to pins for analog input, they continue to function as P2 and P3 I/O. Accordingly, when any of them are used as these ports and others are used as analog input pins, make sure to set the outputs of pins that are set for analog input to "1." Also, the port input function of the pin functions as an analog input is undefined.

(6) TALA instruction

When the **TALA** instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, and simultaneously, the low-order 2 bits of register A is "0."

(7) Recommended operating conditions when using A/D converter

The recommended operating conditions of supply voltage and system clock frequency when using A/D converter are different from those when not using A/D converter.

Table 2.4.2 shows the recommended operating conditions when using A/D converter.

Table 2.4.2 Recommended operating conditions (when using A/D converter)

Parameter	Condition	Limits			Unit	
i alametei	Condition		Min.	Тур.	Max.	
System clock frequency	VDD = VRST to 5.5 V (high-speed mode)		0.1		4.4	
(at ceramic resonance or	VDD = VRST to 5.5 V (middle-speed mode)		0.1		2.2	
RC oscillation) (Note 2)	VDD = VRST to 5.5 V (low-speed mode)	0.1		1.1		
	VDD = VRST to 5.5 V (default mode)		0.1		0.5	MHz
System clock frequency	VDD = VRST to 5.5 V (high-speed mode)		0.1		3.2	1011 12
(ceramic resonance	VDD = VRST to 5.5 V (middle-speed mode)	Duty	0.1		1.6	
selected, at external	VDD = VRST to 5.5 V (low-speed mode)	40 % to 60 %	0.1		0.8	
clock input)	VDD = VRST to 5.5 V (default mode)		0.1		0.4	

Notes 1: VRST: Detection voltage of voltage drop detection circuit.

2: The frequency at RC oscillation is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

4502 Group 2.5 Reset

2.5 Reset

System reset is performed by applying "L" level to the RESET pin for 1 machine cycle or more when the following conditions are satisfied:

- •the value of supply voltage is the minimum value or more of the recommended operating conditions
- •oscillation is stabilized.

Then when "H" level is applied to RESET pin, the software starts from address 0 in page 0 after elapsing of the internal oscillation stabilizing time (On-chip oscillator (internal oscillator) clock is counted for 5359 times). Figure 2.5.2 shows the oscillation stabilizing time.

2.5.1 Reset circuit

The 4502 Group has the voltage drop detection circuit.

(1) Power-on reset

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V to 2.0 V must be set to 100 μ s or less. If the rising time exceeds 100 μ s, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

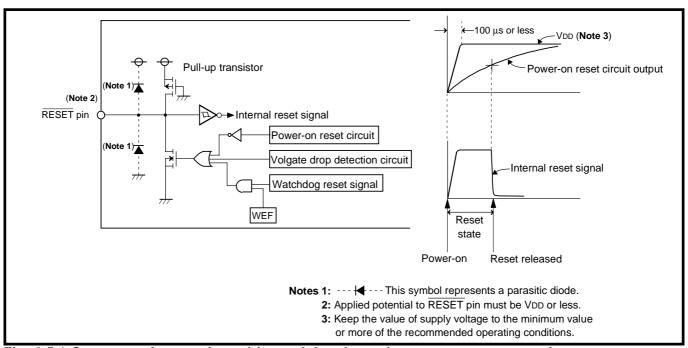


Fig. 2.5.1 Structure of reset pin and its peripherals, and power-on reset operation

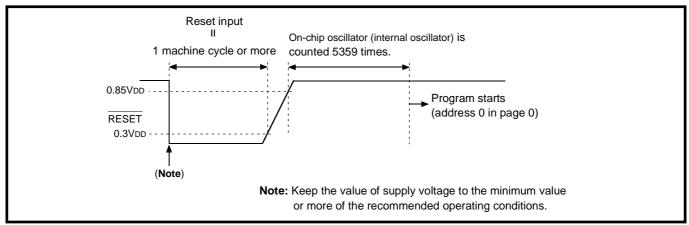


Fig. 2.5.2 Oscillation stabilizing time after system is released from reset

4502 Group 2.5 Reset

2.5.2 Internal state at reset

Figure 2.5.3 shows the internal state at reset. The contents of timers, registers, flags and RAM other than shown in Figure 2.5.3 are undefined, so that set them to initial values.

Program counter (PC)	
Address 0 in page 0 is set to program counter.	
• Interrupt enable flag (INTE)	
• Power down flag (P)	
• External 0 interrupt request flag (EXF0)	
• Interrupt control register V1	
• Interrupt control register V2	
• Interrupt control register I1	
• Timer 1 interrupt request flag (T1F)	
• Timer 2 interrupt request flag (T2F)	
A/D conversion completion flag ADF	
Watchdog timer flags (WDF1, WDF2)	
Watchdog timer enable flag (WEF)	
• Timer control register W1	
• Timer control register W2	
• Timer control register W6	
Clock control register MR	
• Key-on wakeup control register K0	
• Key-on wakeup control register K1	
• Key-on wakeup control register K2	
Pull-up control register PU0	
Pull-up control register PU1 0 0 0 0	
Pull-up control register PU2	
• A/D control register Q1	
• Carry flag (CY)	
• Register A	
• Register B	
Register DX X X	
• Register E	
• Register X0 0 0 0	
• Register Y	
Register ZXX	
• Stack pointer (SP)	
Operation source clock On-chip oscillator (operation state)	
Ceramic resonator Operation state	
RC oscillation circuit	
"X" represents undefined.	

Fig. 2.5.3 Internal state at reset

4502 Group 2.5 Reset

2.5.3 Notes on use

(1) Register initial value

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

(2) Power-on reset

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V to 2.0 V must be set to 100 μ s or less. If the rising time exceeds 100 μ s, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

2.6 Voltage drop detection circuit

The built-in voltage drop detection circuit is designed to detect a drop in voltage and to reset the microcomputer if the supply voltage drops below a set value.

Figure 2.6.1 shows the voltage drop detection circuit, and Figure 2.6.2 shows the operation waveform example of the voltage drop detection circuit.

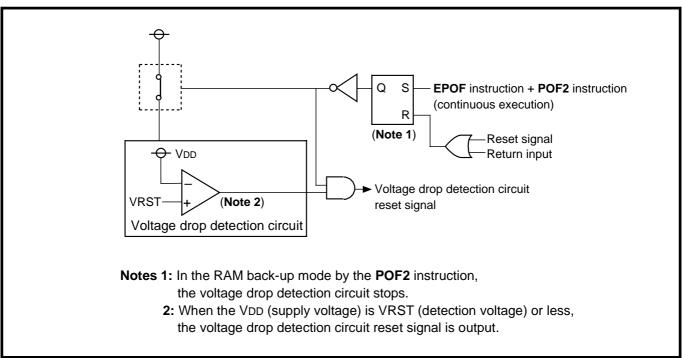


Fig. 2.6.1 Voltage drop detection circuit

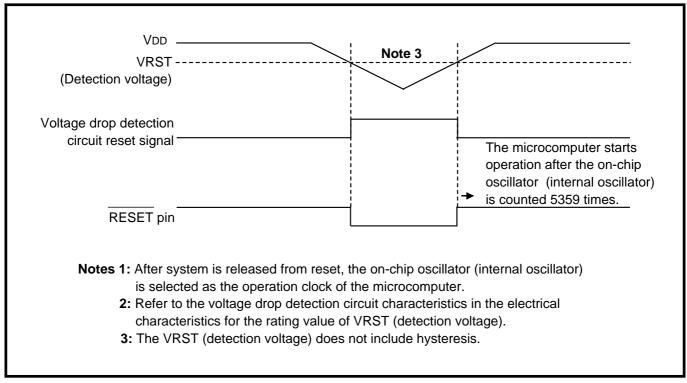


Fig. 2.6.2 Voltage drop detection circuit operation waveform example

Note: Refer to section "3.1 Electrical characteristics" for the reset voltage of the voltage drop detection circuit.

2.7 RAM back-up

2.7.1 RAM back-up mode

The system enters RAM back-up mode when the **POF** or **POF2** instruction is executed after the **EPOF** instruction is executed. Table 2.7.1 shows the function and state retained at RAM back-up mode. Also, Table 2.7.2 shows the return source from this state.

(1) RAM back-up mode

As oscillation stops with RAM, the state of reset circuit retained, current dissipation can be reduced without losing the contents of RAM.

Table 2.7.1 Functions and states retained at RAM back-up mode

Function	RAM b	RAM back-up		
Function	POF	POF2		
Program counter (PC), registers A, B, carry flag (CY), stack pointer (SP) (Note 2)	×	×		
Contents of RAM	0	0		
Port level	(Note 6)	(Note 6)		
Selected oscillation circuit	0	0		
Timer control register W1	×	×		
Timer control registers W2, W6	0	0		
Clock control register MR	X	×		
Interrupt control registers V1, V2	×	X		
Interrupt control register I1	0	0		
Timer 1 function	×	×		
Timer 2 function	(Note 3)	(Note 3)		
A/D function	×	×		
Voltage drop detection circuit	O (Note 5)	×		
Pull-up control registers PU0-PU2	0	0		
Key-on wakeup control registers K0-K2	0	0		
A/D control register Q1	0	0		
External 0 interrupt request flag (EXF0)	×	×		
Timer 1 interrupt request flag (T1F)	×	×		
Timer 2 interrupt request flag (T2F)	(Note 3)	(Note 3)		
A/D conversion completion flag (ADF)	×	×		
Watchdog timer flags (WDF1)	× (Note 4)	× (Note 4)		
Watchdog timer enable flag (WEF)	×	×		
16-bit timer (WDT)	× (Note 4)	X (Note 4)		
Interrupt enable flag (INTE)	×	×		

- **Notes 1:** "O" represents that the function can be retained, and "X" represents that the function is initialized. Registers and flags other than the above are undefined at RAM back-up, and set an initial value after returning.
 - 2: The stack pointer (SP) points the level of the stack register and is initialized to "7" at RAM back-up.
 - 3: The state of the timer is undefined.
 - **4:** Initialize the watchdog timer flag WDF1 with the **WRST** instruction, and then execute the **POF or POF2** instruction.
 - **5:** The voltage drop detection circuit is operating at the RAM back-up state and sytem reset occurs when the voltage drop is detected.
 - **6:** As for the D₂/C pin, the output latch of port C is set to "1" at the RAM back-up. However, the output latch of port D₂ is retained.

Table 2.7.2 Return source and return condition

F	Return source	Return condition	Remarks
	Port P0	Return by an external "L" level input.	Key-on wakeup function can be selected with
	Port P1 (Note)		every one port. Set the port using the key-on
dn	Port P2		wakeup function to "H" level before going into
wakeup nal	Port D2/C		the RAM back-up state.
wa	Port D3/K		
nal sig	Port P13/INT	Return by an external "H" level or "L"	Select the return level ("L" level or "H" level)
Exterr	(Note)	level input. The return level can be	with the bit 2 of register I1 according to the
ш		selected by register I12. When the	external state before going into the RAM back-
		return level is input, the EXF0 flag is	up state.
		not set.	

Note: When the bit 3 (K13) of the key-on wakeup control register K1 is "0", the key-on wakeup ("H" level or "L" level) of INT pin is set. When the K13 is "1", the key-on wakeup ("L" level) of port P13 is set.

(2) Start condition identification

When system returns from both RAM back-up mode and reset, software is started from address 0 in page 0.

The start condition (warm start or cold start) can be identified by examining the state of the power down flag (P) with the **SNZP** instruction.

Table 2.7.3 Start condition identification

Return condition	P flag
External wakeup signal input	1
Reset	0

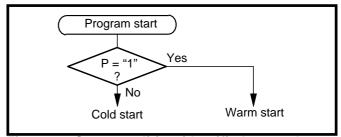


Fig. 2.7.1 Start condition identified example

2-45

4502 Group 2.7 RAM back-up

2.7.2 Related registers

(1) Key-on wakeup control register K0

Register K0 controls the ON/OFF of the key-on wakeup function of ports P00–P03. Set the contents of this register through register A with the **TK0A** instruction. The contents of register K0 is transferred to register A with the **TAK0** instruction. Table 2.7.4 shows the key-on wakeup control register K0.

Table 2.7.4 Key-on wakeup control register K0

Key-on wakeup control register K0		at reset : 00002		at RAM back-up : state retained	R/W	
K03	Port P03	0	0 Key-on wakeup invalid			
KU3	key-on wakeup control bit	1	1 Key-on wakeup valid			
K02	Port P02	0	0 Key-on wakeup invalid			
KU2	key-on wakeup control bit	1	1 Key-on wakeup valid			
K04	Port P01	0	Key-on wakeup invalid			
K01 key-on wakeup control bit 1 k		Key-on wakeup valid				
K00	Port P00	0	Key-on wak	ceup invalid		
K00	key-on wakeup control bit	1	Key-on wak	ceup valid		

Note: "R" represents read enabled, and "W" represents write enabled.

(2) Key-on wakeup control register K1

Register K1 controls the ON/OFF of the key-on wakeup function of ports P10–P13. Set the contents of this register through register A with the **TK1A** instruction. The contents of register K1 is transferred to register A with the **TAK1** instruction. Table 2.7.5 shows the key-on wakeup control register K1.

Table 2.7.5 Key-on wakeup control register K1

Key-on wakeup control register K1		at reset: 00002		at RAM back-up : state retained	R/W		
V10	Port P13/INT	0	0 P13 key-on wakeup invalid/INT pin key-on wakeup v				
K13	key-on wakeup control bit	1	P13 key-on wakeup valid/INT pin key-on wakeup inval				
V10	Port P12/CNTR	0	Key-on wakeup invalid				
K12	key-on wakeup control bit	1	Key-on wakeup valid				
	Port P11	0	Key-on wakeup invalid				
K11	key-on wakeup control bit	1	Key-on wakeup valid				
K10	Port P10	0	Key-on wak	ceup invalid			
K10	key-on wakeup control bit	1	Key-on wakeup valid				

Note: "R" represents read enabled, and "W" represents write enabled.

(3) Key-on wakeup control register K2

Register K2 controls the ON/OFF of the key-on wakeup function of ports P20, P21, D2/C and D3/K. Set the contents of this register through register A with the **TK2A** instruction.

The contents of register K2 is transferred to register A with the TAK2 instruction.

Table 2.7.6 shows the key-on wakeup control register K2.

Table 2.7.6 Key-on wakeup control register K2

Key-on wakeup control register K2		at reset: 00002		at RAM back-up : state retained	R/W	
K23	Port D3/K	0	0 Key-on wakeup invalid			
N23	key-on wakeup control bit	1	Key-on wakeup valid			
K22	Port D2/C	0	Key-on wakeup invalid			
NZ2	key-on wakeup control bit	1	Key-on wakeup valid			
K21	Port P21/AIN1	0	Key-on wakeup invalid			
NZ1	key-on wakeup control bit	1	1 Key-on wakeup valid			
K20	Port P20/AIN0	0	Key-on wakeup invalid			
N20	key-on wakeup control bit	1	Key-on wak	eup valid		

Note: "R" represents read enabled, and "W" represents write enabled.

(4) Pull-up control register PU0

Register PU0 controls the ON/OFF of the ports P00–P03 pull-up transistor. Set the contents of this register through register A with the **TPU0A** instruction. Table 2.7.7 shows the pull-up control register PU0.

Table 2.7.7 Pull-up control register PU0

Pull-up control register PU0		at reset : 00002		at RAM back-up : state retained	W	
DLIO	Port P03	0	0 Pull-up transistor OFF			
PU03	pull-up transistor control bit	1	Pull-up transistor ON			
PU02	Port P02	0	Pull-up transistor OFF			
PU02	pull-up transistor control bit	1	Pull-up transistor ON			
DI 104	Port P01	0	Pull-up transistor OFF			
P001	PU01 pull-up transistor control bit		Pull-up tran	sistor ON		
PU00	Port P00	0	Pull-up transistor OFF			
- 000	pull-up transistor control bit	1	Pull-up tran	sistor ON		

Note: "W" represents write enabled.

(5) Pull-up control register PU1

Register PU1 controls the ON/OFF of the ports P10-P13 pull-up transistor. Set the contents of this register through register A with the **TPU1A** instruction. Table 2.7.8 shows the pull-up control register PU1.

Table 2.7.8 Pull-up control register PU1

Pull-up control register PU1		at res	et: 00002	at RAM back-up : state retained	W	
DUIA	Port P13/INT	0	0 Pull-up transistor OFF			
PU13	pull-up transistor control bit	1	1 Pull-up transistor ON			
DLIA	Port P12/CNTR	0	0 Pull-up transistor OFF			
PU12	pull-up transistor control bit 1 Pull-up transistor ON					
DLI14	Port P11	0	Pull-up transistor OFF			
PU11	pull-up transistor control bit	1	Pull-up transistor ON			
PU10	Port P10	0	Pull-up transistor OFF			
-010	pull-up transistor control bit	1	Pull-up tran	sistor ON		

Note: "W" represents write enabled.

(6) Pull-up control register PU2

Register PU2 controls the ON/OFF of the ports P20, P21, D2/C and D3/K pull-up transistor. Set the contents of this register through register A with the **TPU2A** instruction. Table 2.7.9 shows the pull-up control register PU2.

Table 2.7.9 Pull-up control register PU2

Pull-up control register PU2		at reset : 00002		at RAM back-up : state retained	W	
PU23	Port D3/K	0	Pull-up tran	sistor OFF		
PU23	pull-up transistor control bit	1	Pull-up tran	sistor ON		
DLIDo	Port D2/C	0	0 Pull-up transistor OFF			
PU22	pull-up transistor control bit	1	Pull-up transistor ON			
PU21	Port P21/AIN1	0	Pull-up tran	sistor OFF		
PUZ1	pull-up transistor control bit	1	Pull-up transistor ON			
PU20	Port P20/AIN0	0	Pull-up transistor OFF			
F U20	pull-up transistor control bit	1	Pull-up tran	sistor ON		

Note: "W" represents write enabled.

(7) Interrupt control register I1

The INT pin timer 1 control enable bit is assigned to bit 0, INT pin edge detection circuit control bit is assigned to bit 1, interrupt valid waveform for INT pin/return level selection bit is assigned to bit 2 and INT pin input control bit is assigned to bit 3.

Set the contents of this register through register A with the TI1A instruction.

In addition, the **TAI1** instruction can be used to transfer the contents of register I1 to register A. Table 2.7.10 shows the interrupt control register I1.

Table 2.7.10 Interrupt control register I1

1	Interrupt control register I1		et: 00002	at RAM back-up : state retained	R/W	
110	I13 INT pin input control bit (Note 2)		INT pin inp	ut disabled		
113			INT pin inp	ut enabled		
	Interrupt valid waveform for INT	0	Falling wav	eform ("L" level of INT pin is recogn	ized with	
I1 2	Interrupt valid waveform for INT		the SNZI0 instruction)/"L" level			
112	pin/return level selection bit	4	Rising wave	eform ("H" level of INT pin is recogn	ized with	
	(Note 2)	1	the SNZIO	instruction)/"H" level		
	INT pin edge detection circuit	0	One-sided edge detected			
111	control bit	1	Both edges	detected		
I10	INT pin	0	Disabled			
110	timer 1 control enable bit	1	Enabled			

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set. Accordingly, after the one instruction is executed, clear EXF0 flag with the SNZ0 instruction while the bit 0 (V10) of register V1 is "0". In this time, set the NOP instruction after the SNZ0 instruction, for the case when a skip is performed with the SNZ0 instruction.

2.7.3 Notes on use

(1) Key-on wakeup function

After setting ports (P0, P1, D2/C, D3/K, P20/AIN0 and P21/AIN1 specified with register K0–K2) which key-on wakeup function is valid to "H," execute the **POF** or **POF2** instruction.

If one of ports which key-on wakeup function is valid is in the "L" level state, system returns from the RAM back-up after the **POF** or **POF2** instruction is executed.

(2) POF instruction, POF2 instruction

Execute the **POF** or **POF2** instruction immediately after executing the **EPOF** instruction to enter the RAM back-up state.

Note that system cannot enter the RAM back-up state when executing only the **POF** or **POF2** instruction.

Be sure to disable interrupts by executing the **DI** instruction before executing the **EPOF** instruction and the **POF** or **POF2** instruction.

(3) Return from RAM back-up

After system returns from RAM back-up, set the undefined registers and flags.

The initial value of the following registers are undefined at RAM back-up. After system is returned from RAM back-up, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)

(4) Watchdog timer

The watchdog timer function is valid after system is returned from the RAM back-up. When not using the watchdog timer function, execute the **DWDT** instruction and the **WRST** instruction continuously every system is returned from the RAM back-up, and stop the watchdog timer function.

(5) P13/INT pin

When the bit 3 of register I1 is cleared, the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.

• When the key-on wakeup function of port P13 is not used (register K13 = "0"), clear bits 2 and 3 of register I1 before system enters to the RAM back-up mode.

(6) External clock

When the external signal clock is used as the source oscillation (f(XIN)), note that the RAM back-up mode (**POF** and **POF2** instructions) cannot be used.

2.8 Oscillation circuit

The 4502 Group has an internal oscillation circuit to produce the clock required for microcomputer operation. The ceramic resonance and the RC oscillation can be used for the source clock.

After system is released from reset, the 4502 Group starts operation by the clock output from the on-chip oscillator which is the internal oscillator.

2.8.1 Oscillation circuit

(1) f(XIN) clock generating circuit

The ceramic resonator or RC oscillation can be used for the source oscillation (f(XIN)) of the MCU.

After system is released from reset, the 4502 Group starts operation by the clock output from the on-chip oscillator which is the internal oscillator.

When the ceramic resonator is used, execute the **CMCK** instruction. When the RC oscillation is used, execute the **CRCK** instruction. The oscillation circuit by the **CMCK** or **CRCK** instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these two instructions is valid. Other oscillation circuit and the on-chip oscillator stop.

Execute the **CMCK** or the **CRCK** instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended). Also, when the **CMCK** or the **CRCK** instruction is not executed in program, the 4502 Group operates by the on-chip oscillator.

(2) On-chip oscillator operation

When the MCU operates by the on-chip oscillator as the source oscillation (f(XIN)) without using the ceramic resonator or the RC oscillator, connect XIN pin to Vss and leave XOUT pin open (Figure 2.8.2).

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

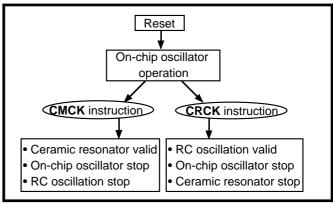


Fig. 2.8.1 Switch to ceramic resonance/RC oscillation

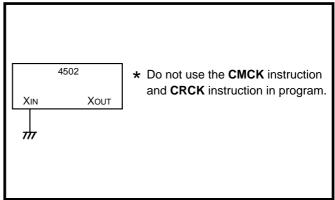


Fig. 2.8.2 Handling of XIN and XOUT when operating on-chip oscillator

(3) Ceramic resonator

When the ceramic resonator is used as the source oscillation (f(XIN)), connect the ceramic resonator and the external circuit to pins XIN and XOUT at the shortest distance. Then, execute the **CMCK** instruction. A feedback resistor is built in between pins XIN and XOUT (Figure 2.8.3).

As for the oscillation frequency, do not exceed the values shown in the Table 2.8.1.

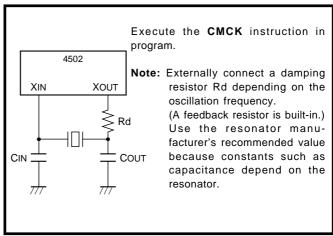


Fig. 2.8.3 Ceramic resonator external circuit

Table 2.8.1 Maximum value of oscillation frequency and supply voltage

Supply voltage	(:	System clock)	Oscillation frequency
2.7 V (Note) to 5.5 V	(f(XIN)) H	High-speed mode	4.4 MHz
	(f(XIN)/2) N	Middle-speed mode	
	(f(XIN)/4) L	Low-speed mode	
	(f(XIN)/8) [Default mode	

Note: System is in the reset state when the value is under the detection voltage.

(4) RC oscillation

When the RC oscillation is used as the source oscillation (f(XIN)), connect the XIN pin to the external circuit of resistor R and the capacitor C at the shortest distance and leave XOUT pin open. Then, execute the **CRCK** instruction (Figure 2.8.4).

The frequency is affected by a capacitor, a resistor and a microcomputer.

So, set the constants within the range of the frequency limits.

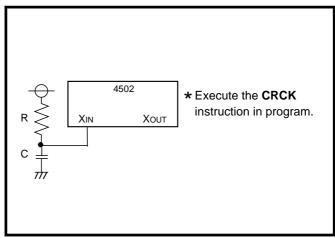


Fig. 2.8.4 External RC oscillation circuit

2.8.2 Oscillation operation

System clock is supplied to CPU and peripheral device as the standard clock for the microcomputer operation. For the 4502 Group, the clock supplied from the on-chip oscillator (internal oscillator) or the ceramic resonance circuit, RC oscillation circuit is selected from the high-speed mode (f(XIN)/2), low-speed mode (f(XIN)/4) or default mode (f(XIN)/8) with the register MR. Figure 2.8.5 shows the structure of the clock control circuit.

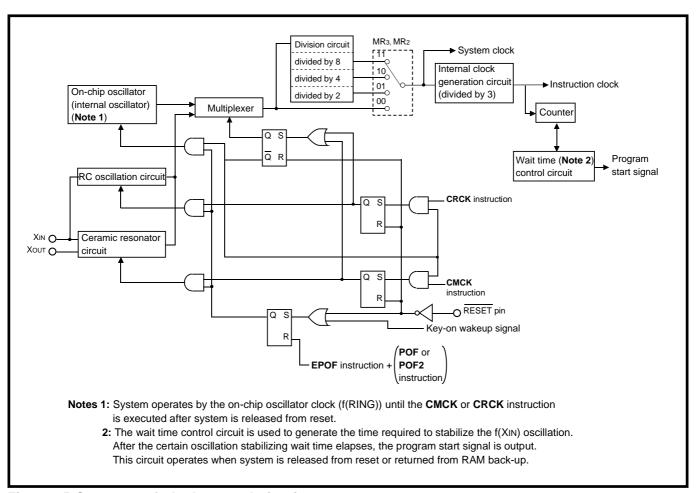


Fig. 2.8.5 Structure of clock control circuit

2.8.3 Notes on use

(1) Clock control

Execute the **CMCK** or the **CRCK** instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended).

The oscillation circuit by the **CMCK** or **CRCK** instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these two instructions is valid. Other oscillation circuits and the on-chip oscillator stop.

(2) On-chip oscillator

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

Also, the oscillation stabilize wait time after system is released from reset is generated by the onchip oscillator clock. When considering the oscillation stabilize wait time after system is released from reset, be careful that the variable frequency of the on-chip oscillator clock.

(3) External clock

When the external signal clock is used as the source oscillation (f(XIN)), note that the RAM back-up mode (**POF** and **POF2** instructions) cannot be used.

(4) Value of a part connected to an oscillator

Values of a capacitor and a resistor of the oscillation circuit depend on the connected oscillator and the board. Accordingly, consult the oscillator manufacturer for values of each part connected the oscillator.

CHAPTER 3

APPENDIX

- 3.1 Electrical characteristics
- 3.2 Typical characteristics
- 3.3 List of precautions
- 3.4 Notes on noise
- 3.5 Package outline

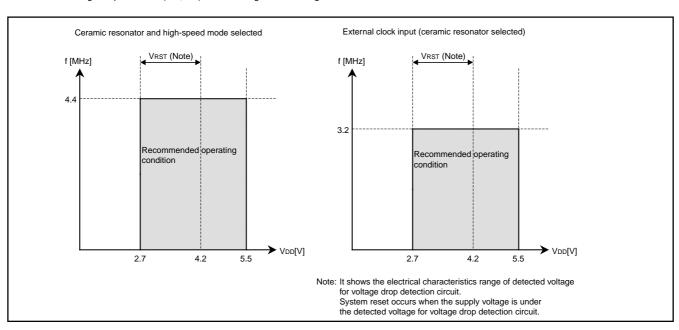
3.1 Electrical characteristics

3.1.1 Absolute maximum ratings

Table 3.1.1 Absolute maximum ratings

Symbol	Parameter	Conditions	Ratings	Unit
VDD	Supply voltage		-0.3 to 6.5	V
VI	Input voltage P0, P1, P2, P3, D2/C, D3/K, RESET, XIN		-0.3 to VDD+0.3	V
Vı	Input voltage Do, D1, D4, D5		-0.3 to 13.0	V
Vı	Input voltage AIN0-AIN3		-0.3 to VDD+0.3	V
Vo	Output voltage P0, P1, P2, P3, D2/C, D3/K, RESET		-0.3 to VDD+0.3	V
Vo	Output voltage Do, D1, D4, D5	Output transistors in cut-off state	-0.3 to 13.0	V
Vo	Output voltage Xout		-0.3 to VDD+0.3	V
Pd	Power dissipation	Ta = 25 °C	300	mW
Topr	Operating temperature range		-20 to 85	°C
Tstg	Storage temperature range		-40 to 125	°C

3.1.2 Recommended operating conditions


Table 3.1.2 Recommended operating conditions 1

(Ta = -20 °C to 85 °C, VDD = 2.7 to 5.5 V, unless otherwise noted)

		0 1111	0 (1)		Limits		T
Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
VDD	Supply voltage	High-speed mode	$f(XIN) \le 4.4 \text{ MHz}$	2.7		5.5	V
		Middle-speed mode		(Note 1)			
		Low-speed mode					
		Default mode					
VRAM	RAM back-up voltage	(at RAM back-up mode v	with the POF2	1.8 (Note 2)			V
		instruction)					
Vss	Supply voltage				0		V
VIH	"H" level input voltage	P0, P1, P2, P3, D2, D3, X	ÍN.	0.8VDD		VDD	V
ViH	"H" level input voltage	Do, D1, D4, D5		0.8VDD		12	V
VIH	"H" level input voltage	RESET		0.85VDD		VDD	V
ViH	"H" level input voltage	C, K	VDD = 4.0 to 5.5 V	0.5VDD		VDD	V
			VDD = 2.7 to 5.5 V	0.7Vdd		VDD	V
VIH	"H" level input voltage	CNTR, INT		0.85VDD		VDD	V
VIL	"L" level input voltage	P0, P1, P2, P3, D0-D5, X	ÍN	0		0.2VDD	V
VIL	"L" level input voltage	C, K		0		0.16VDD	1
VIL	"L" level input voltage	RESET		0		0.3VDD	V
VIL	"L" level input voltage	CNTR, INT		0		0.15VDD	
IoL(peak)	"L" level peak output current	P2, P3, RESET	VDD = 5.0 V			10	mA
IoL(peak)	"L" level peak output current	D0, D1	VDD = 5.0 V			40	mA
IoL(peak)	"L" level peak output current	D2/C, D3/K, D4, D5	VDD = 5.0 V			24	mA
IoL(peak)	"L" level peak output current	P0, P1	VDD = 5.0 V			24	mA
IoL(avg)	"L" level average output current	P2, P3, RESET (Note 3)	VDD = 5.0 V			5.0	mA
IoL(avg)	"L" level average output current	Do, D1 (Note 3)	VDD = 5.0 V			30	mA
IoL(avg)	"L" level average output current	D ₂ /C, D ₃ /K, D ₄ , D ₅ (Note 3)	VDD = 5.0 V			15	mA
loL(avg)	"L" level average output current	P0, P1 (Note 3)	VDD = 5.0 V			12	mA
ΣloL(avg)	"L" level total average current	P2, D, RESET				80	mA
		P0, P1, P3				80	mA

Notes 1: System is in the reset state when the value is the detection voltage of the voltage drop detection circuit or less.

^{3:} The average output current (IOH, IOL) is the average value during 100 ms.

^{2:} The voltage drop detection circuit is operating in the RAM back-up with the POF instruction (system enters into the reset state when the value is VRST or less). In the RAM back-up mode with the POF2 instruction, the voltage drop detection circuit stops.

Table 3.1.3 Recommended operating conditions 2

(Ta = -20 °C to 85 °C, VDD = 2.7 to 5.5 V, unless otherwise noted)

Symbol	Parameter	Conditions Limits Min. Typ.		Limits			Unit
Symbol	Farameter			Max.	1 01111		
f(XIN)	Oscillation frequency	High-speed mode				4.4	MHz
	(with a ceramic resonator/	Middle-speed mode					
	RC oscillation) (Note)	Low-speed mode					
		Default mode					
f(XIN)	Oscillation frequency	High-speed mode				3.2	MHz
	(with a ceramic resonator selected,	Middle-speed mode					
	external clock input)	Low-speed mode					
		Default mode					
Δ f(XIN)	Oscillation frequency error	VDD = 5.0 V ±10 %,				±17	%
	(at RC oscillation, error value of	Ta = 25 °C, -20 to 85 °C					
	exteranal R, C not included)						
	Note: use 30 pF capacitor and vary external R						
f(CNTR)	Timer external input frequency	High-speed mode				f(XIN)/6	Hz
		Middle-speed mode				f(XIN)/12	
		Low-speed mode				f(XIN)/24	
		Default mode				f(XIN)/48	
tw(CNTR)	Timer external input period	High-speed mode		3/f(XIN)			S
	("H" and "L" pulse width)	Middle-speed mode		6/f(XIN)]
		Low-speed mode		12/f(XIN)			
		Default mode		24/f(XIN)			
TPON	Valid supply voltage rising time for	$VDD = 0 \rightarrow 2.0 \text{ V}$		<u> </u>		100	μs
	power-on reset circuit						

Note: The frequency at RC oscillation is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

3.1.3 Electrical characteristics

Table 3.1.4 Electrical characteristics (Ta = -20 °C to 85 °C, VDD = 2.7 to 5.5 V, unless otherwise noted)

Cumbal	Parameter Test conditions					Linit		
Symbol		Parameter	rest conditions		Min.	Тур.	Max.	Unit
Vol	"L" level output	voltage P0, P1	VDD = 5.0 V	IOL = 12 mA			2.0	V
				IOL = 4.0 mA			0.9	1
Vol	"L" level output	voltage P2, P3, RESET	VDD = 5.0 V	IOL = 5.0 mA			2.0	V
				IOL = 1.0 mA			0.6	
Vol	"L" level output	voltage Do, D1	VDD = 5.0 V	IOL = 30 mA			2.0	V
				IOL = 10 mA			0.9	1
Vol	"L" level output	voltage D2/C, D3/K	VDD = 5.0 V	IOL = 15 mA			2.0	V
				IOL = 5.0 mA			0.9	
Vol	"L" level output	voltage D4, D5	VDD = 5.0 V	IOL = 15 mA			2.0	V
				IOL = 5.0 mA			0.9	
lін	"H" level input c	urrent	VI = VDD	<u> </u>			1.0	μΑ
	P0, P1, P2, P3,	D2/C, D3/K, RESET						
lін	"H" level input c	urrent Do, D1, D4, D5	VI = 12 V				1.0	μΑ
lıL	"L" level input co	urrent P0, P1, P2, P3	VI = 0 V P0, P1, P2 No pull-up		-1.0			μΑ
lıL	"L" level input current		$VI = 0 V, D_2/C, D_3/K,$	No pull-up	-1.0			μΑ
	Do, D1, D2/C, D	3/K, D4, D5						
IDD	Supply current	at active mode	VDD = 5.0 V	High-speed mode		1.7	5.0	mA
		(Notes 1, 2)	f(XIN) = 4.0 MHz	Middle-speed mode		1.3	3.9	1
				Low-speed mode		1.1	3.3	1
				Default mode		1.0	3.0	
		at RAM back-up mode	VDD = 5.0 V			50	100	μΑ
		(POF instruction execution)						
		at RAM back-up mode	Ta = 25 °C			0.1	1.0	μΑ
		(POF2 instruction execution)	VDD = 5.0 V				10	
			VDD = 3.0 V				6.0	
Rpu	Pull-up resistor	value	VI = 0 V, VDD = 5.0 V		30	60	150	kΩ
	P0, P1, P2, D2/0	C, D ₃ /K, RESET						
VT+ – VT–	Hysteresis INT,		VDD = 5.0 V			0.25		V
VT+ – VT–	Hysteresis RESE	T	VDD = 5.0 V			1.2		V
f(RING)	On-chip oscillato	r clock frequency (Note 3)	VDD = 5.0 V	<u> </u>	1.0	2.0	3.0	MHz

Notes 1: The operation current of the voltage drop detection circuit is included.

^{2:} When the A/D converter is used, the A/D operation current (IADD) is included.

^{3:} When system operates by the on-chip oscillator, the system clock frequency is the on-chip oscillator clock divided by the dividing ratio selected with register MR.

3.1.4 A/D converter recommended operating conditions

Table 3.1.5 A/D converter recommended operating conditions

(Comparator mode included, Ta = -20 °C to 85 °C, unless otherwise noted)

Symbol	Parameter	C	Conditions		Limits			
Symbol	Farameter		Ditations	Min.	Тур.	Max.	Unit	
VDD	Supply voltage	Ta = 25 °C		2.7 (Note)		5.5	V	
		Ta = -20 °C to 85 °C	Ta = -20 °C to 85 °C			5.5	V	
VIA	Analog input voltage			0		VDD+2LSB	V	
f(XIN)	Oscillation frequency	VDD = 2.7 to 5.5 V	High-speed mode	0.1			MHz	
			Middle-speed mode	0.2			MHz	
			Low-speed mode	0.4			MHz	
			Default mode	0.8			MHz	

Note: System is in the reset state when the value is the detection voltage of the voltage drop detection circuit or less.

Table 3.1.6 A/D converter characteristcs

(Comparator mode included, Ta = -20 °C to 85 °C, unless otherwise noted)

Symbol	Parameter	To	est conditions		Limits		Unit
Symbol	Farameter	rest conditions		Min.	Тур.	Max.	Offic
_	Resolution					10	bits
-	Linearity error	Ta = 25 °C, VDD =	2.7 to 5.5 V			±2.0	LSB
		Ta = -25 °C to 85 °	$^{\circ}$ C, VDD = 3.0 V to 5.5 V				
_	Differential non-linearity error	Ta = 25 °C, VDD =	2.7 to 5.5 V			±0.9	LSB
		Ta = -25 °C to 85 °	°C, VDD = 3.0 V to 5.5 V				
Vот	Zero transition voltage	VDD = 5.12 V		10	20	30	mV
VFST	Full-scale transition voltage	VDD = 5.12 V		5115	5125	5135	mV
IADD	A/D operating current (Note 1)	VDD = 5.0 V	f(XIN) = 0.4 MHz to 4.0 MHz		0.3	0.9	mA
TCONV	A/D conversion time	f(XIN) = 4.0 MHz	High-speed mode			46.5	μs
			Middle-speed mode			93.0	
			Low-speed mode			186	
			Default mode			372	
_	Comparator resolution	Comparator mode				8	bits
-	Comparator error (Note 2)	VDD = 5.12 V				±20	mV
_	Comparator comparison time	f(XIN) = 4.0 MHz	High-speed mode			6.0	μs
			Middle-speed mode			12	
			Low-speed mode			24	
			Default mode			48	

Notes 1: When the A/D converter is used, the IADD is included to IDD.

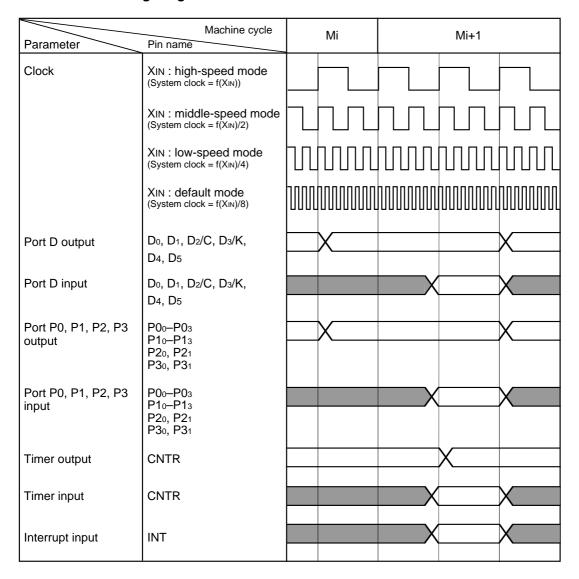
Logic value of comparison voltage Vref—

$$V_{ref} = \frac{V_{DD}}{256} \times n$$

n = Value of register AD (n = 0 to 255)

^{2:} As for the error from the logic value in the comparator mode, when the contents of the comparator register is n, the logic value of the comparison voltage V_{ref} which is generated by the built-in DA converter can be obtained by the following formula.

3.1.5 Voltage drop detection circuit characteristics


Table 3.1.7 Voltage drop detection circuit characteristics

(Ta = -20 °C to 85 °C, unless otherwise noted)

Symbol	Parameter	Test conditions			Unit		
Symbol	Farameter			Min.	Тур.	Max.	Offic
VRST Detection voltage (Note 1)				2.7		4.2	V
		Ta = 25 °C		3.3	3.5	3.7	
I IRST		RAM back-up mode	VDD = 5.0 V		50	100	μΑ
		(POF instruction execution) (Note 2)					

Notes 1: The detected voltage (VRST) is defined as the voltage when reset occurs while the supply voltage (VDD) is falling.

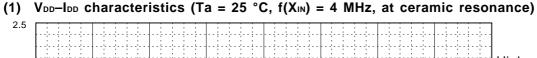
3.1.6 Basic timing diagram

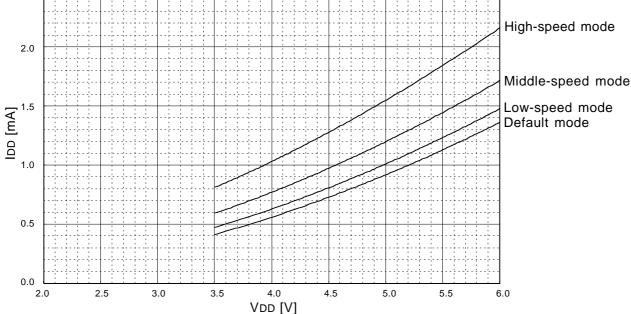
^{2:} The voltage drop detection circuit is operating in the RAM back-up with the POF instruction (It stops in the RAM back-up with the POF2 instruction).

3.2 Typical characteristics

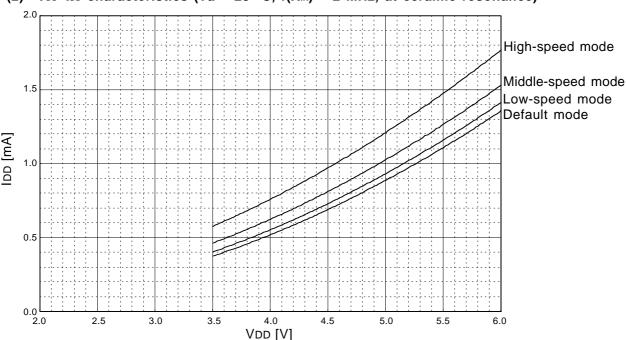
The data described below are characteristic examples for the 4502 Group.

Unless otherwise noted, the characteristics for Mask ROM version are shown here.

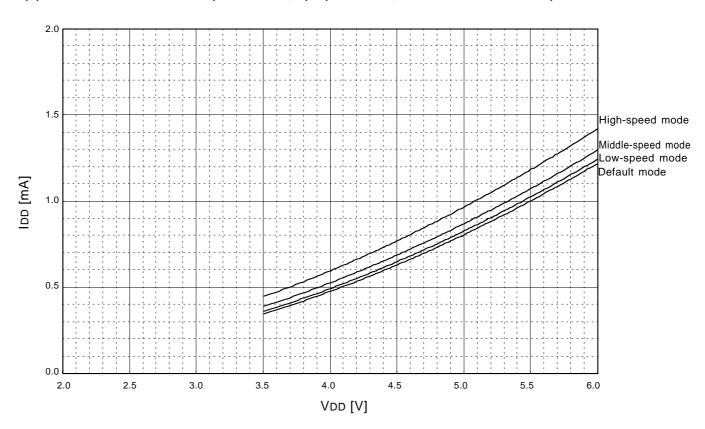

The data shown here are just characteristics examples and are not guaranteed.

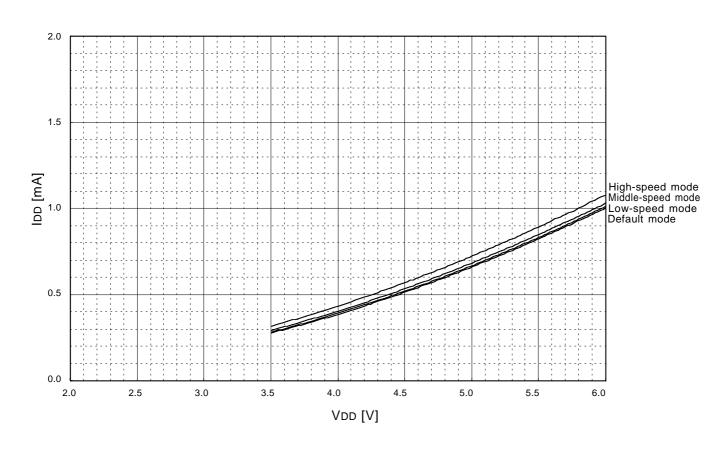

For rated values, refer to "3.1 Electrical characteristics".

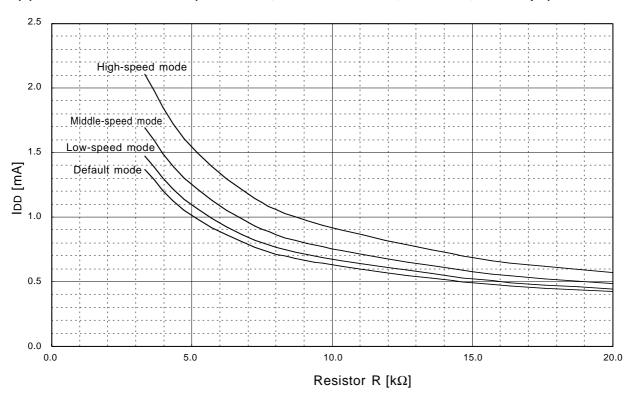
Standard characteristics are different between Mask ROM version and One Time PROM version, due to the difference in the manufacturing processes.

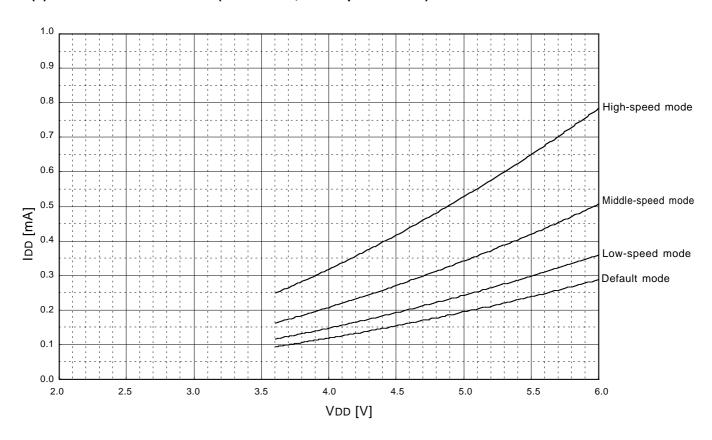

Even in the MCUs which have the same memory type, standard characteristics are different in each sample, too.

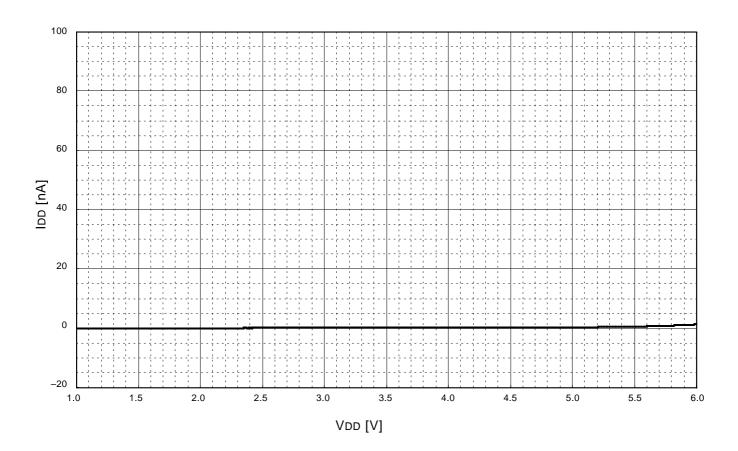
3.2.1 VDD-IDD characteristics



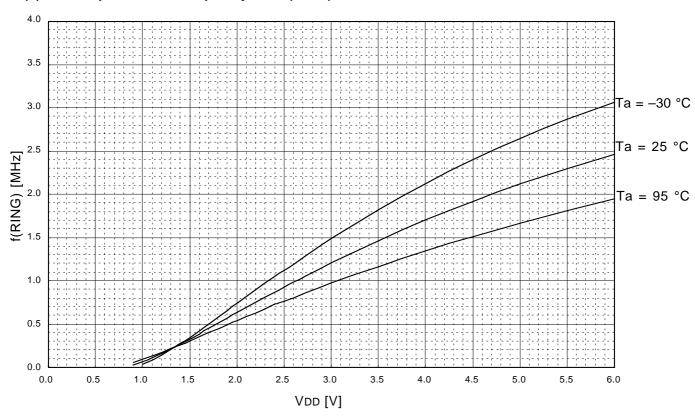

(2) V_{DD} - I_{DD} characteristics (Ta = 25 °C, $f(X_{IN})$ = 2 MHz, at ceramic resonance)


(3) V_{DD}-I_{DD} characteristics (Ta = 25 °C, f(X_{IN}) = 1 MHz, at ceramic resonance)

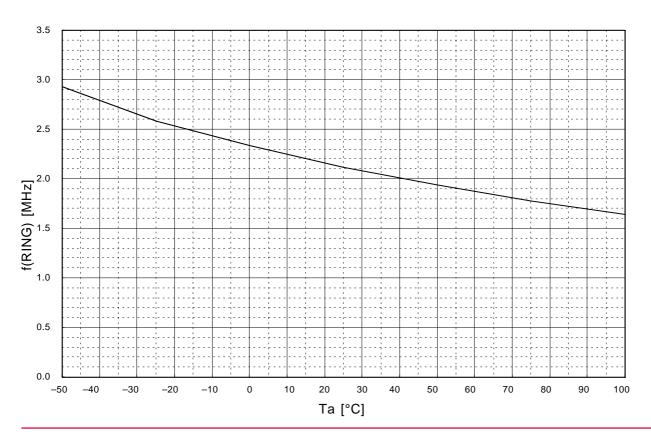

(4) V_{DD} - I_{DD} characteristics (Ta = 25 °C, $f(X_{IN})$ = 400 kHz, at ceramic resonance)


(5) R-IDD characteristics (Ta = 25 °C, at RC oscillation, VDD = 5 V, C = 33 pF)

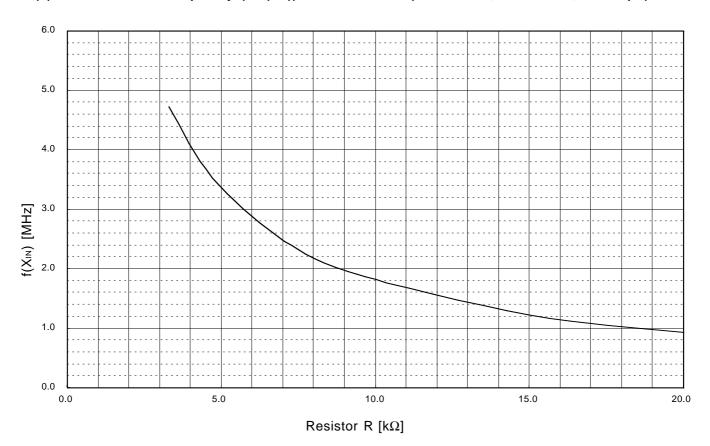
(6) VDD-IDD characteristics (Ta = 25 °C, on-chip oscillator)

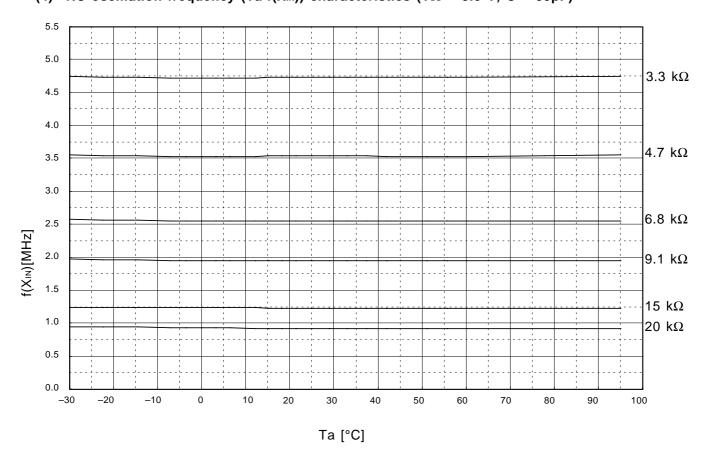


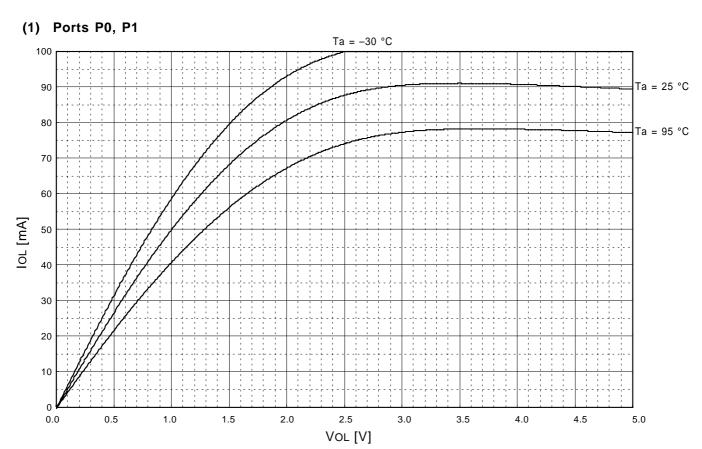
(7) V_{DD}-I_{DD} characteristics (Ta = 25 °C, at RAM back-up)

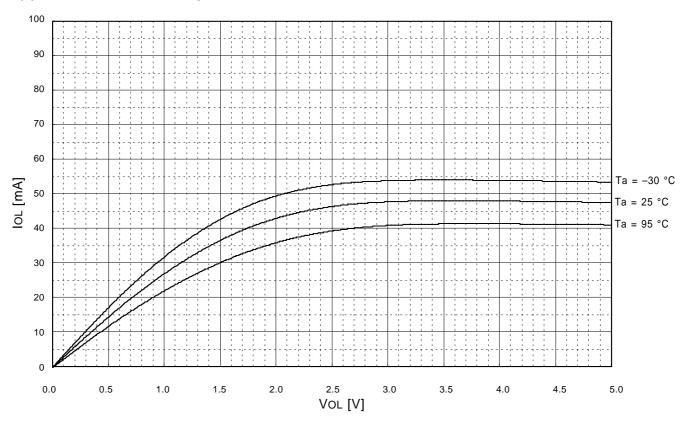


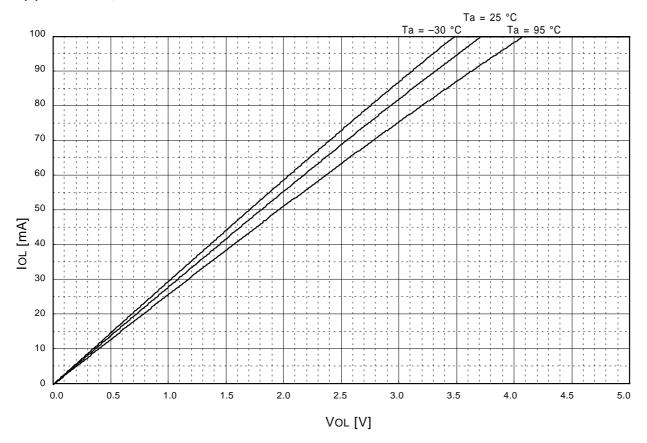
3.2.2 Frequency characteristics

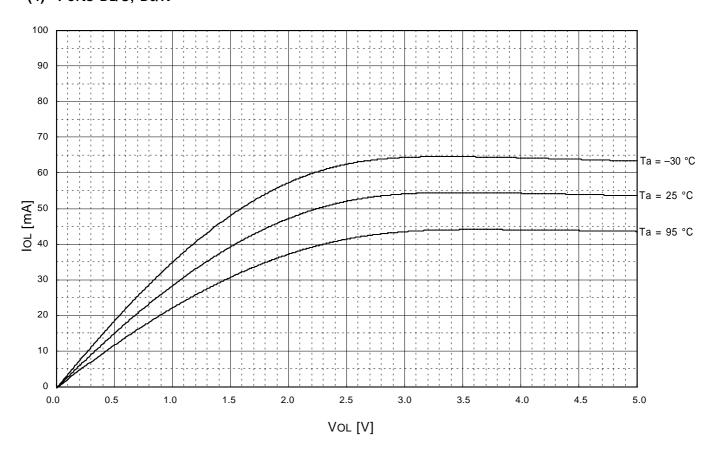

(1) On-chip oscillator frequency VDD-f(RING) characteristics

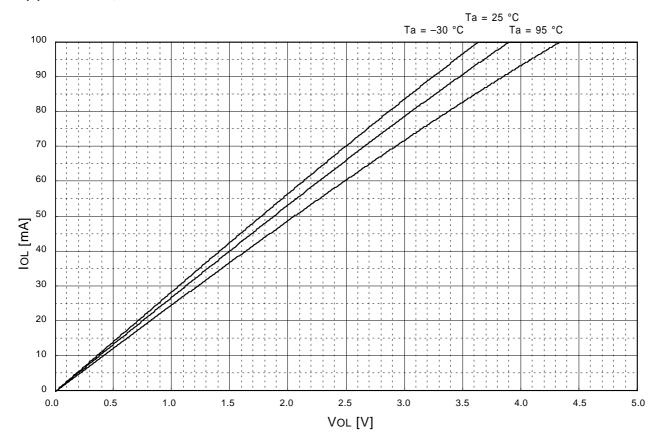

(2) On-chip oscillator frequency Ta-f(RING) characteristics (VDD = 5.0 V)


(3) RC oscillation frequency (R-f(X_{IN})) characteristics ($V_{DD} = 5.0 \text{ V}$, Ta = 25 °C, C = 33pF)

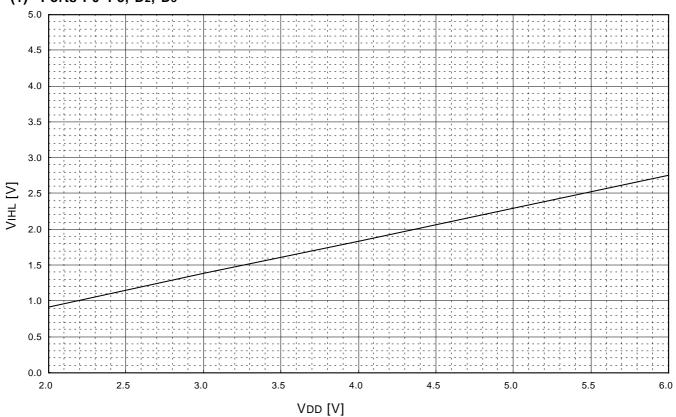

(4) RC oscillation frequency (Ta-f(X_{IN})) characteristics ($V_{DD} = 5.0 \text{ V}$, C = 33pF)


3.2.3 VOL-IOL characteristics (VDD = 5 V)

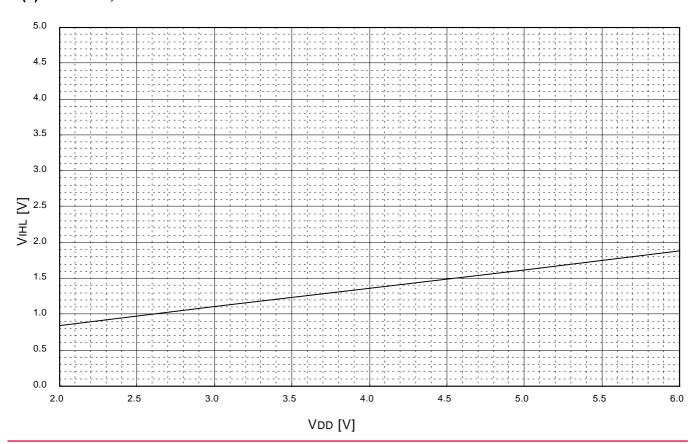

(2) Ports P2, P3, RESET pin


(3) Ports D₀, D₁

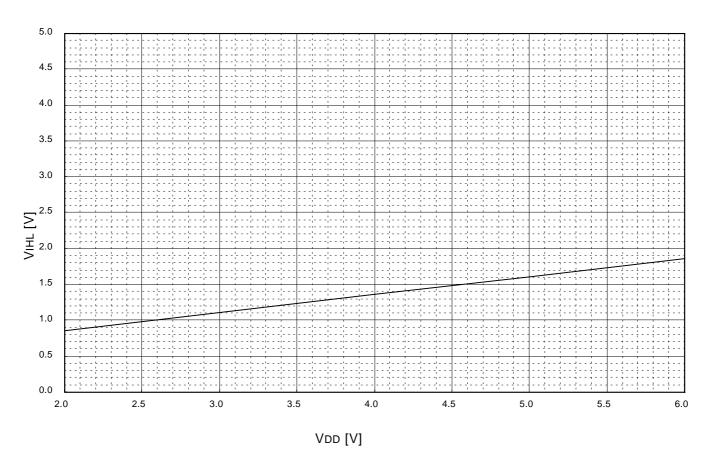
(4) Ports D₂/C, D₃/K

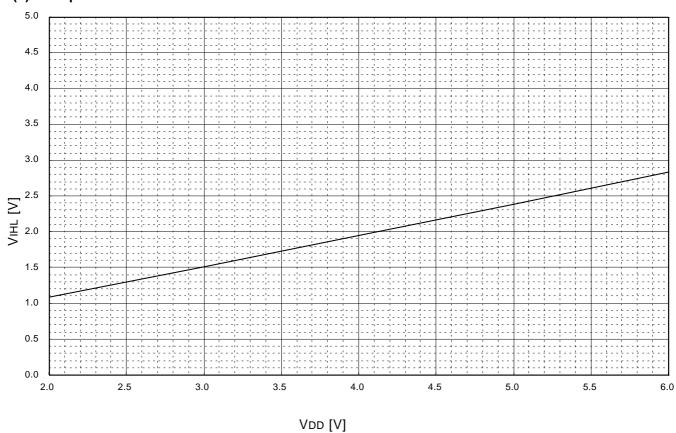


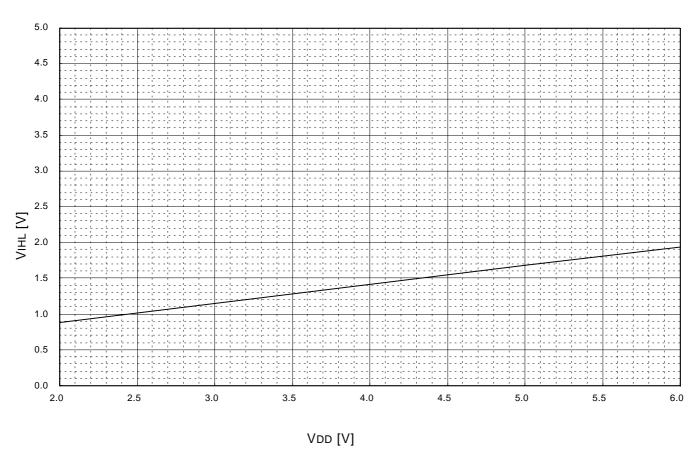
(5) Ports D4, D5

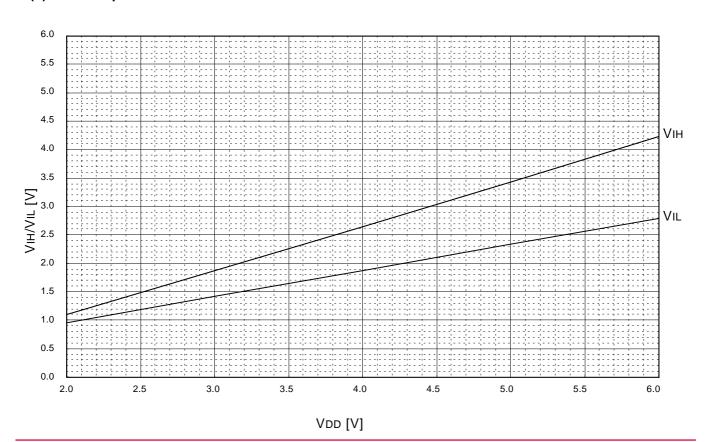


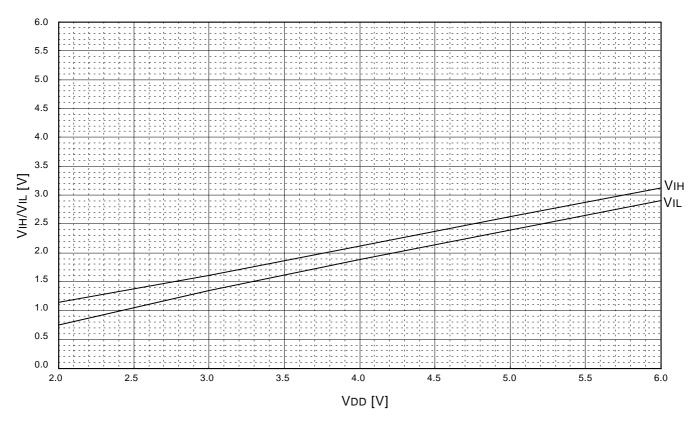
3.2.4 Input threshold (VIH-VIL) characteristics (Ta = 25 °C)

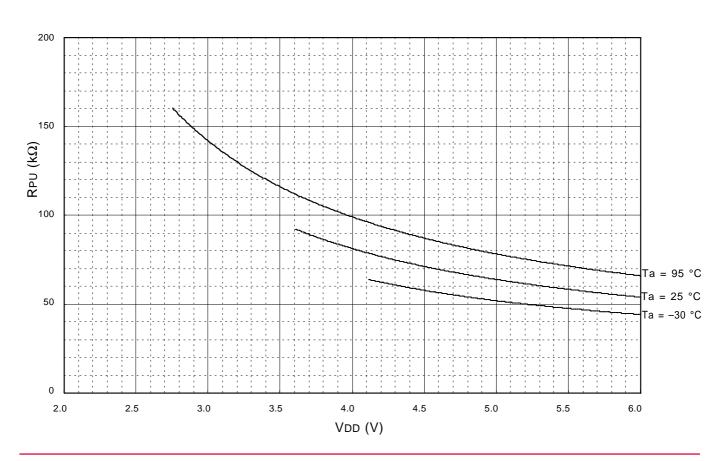

(1) Ports P0-P3, D2, D3


(2) Ports Do, D1

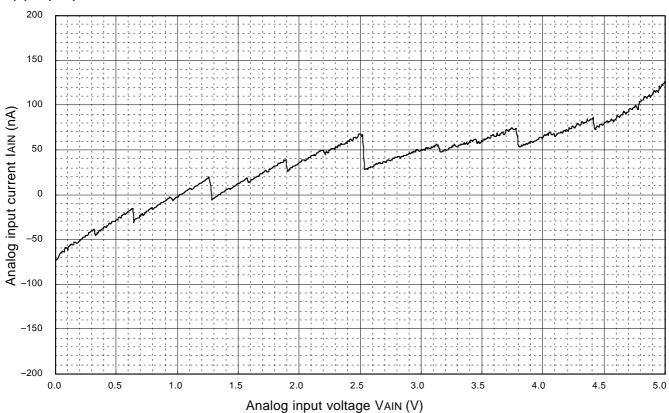

(3) Ports D4, D5


(4) XIN pin

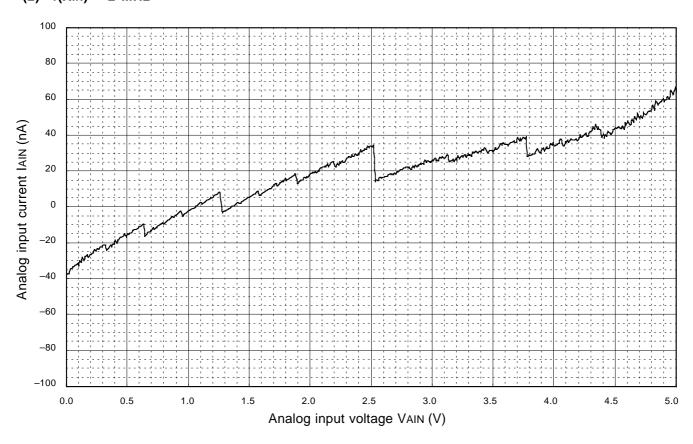

(5) Ports C, K

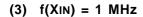

(6) RESET pin

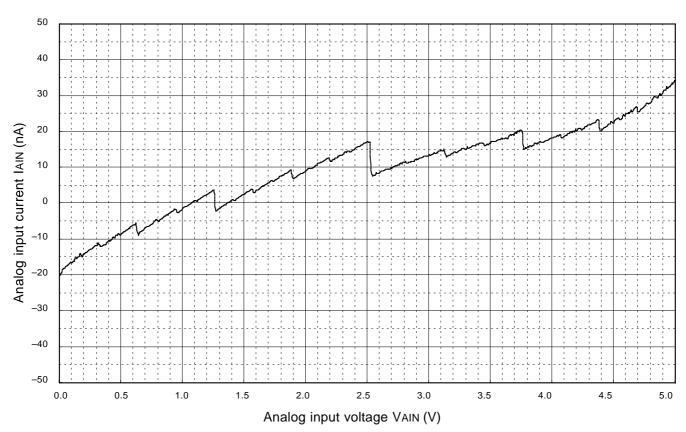
(7) INT pin, CNTR pin

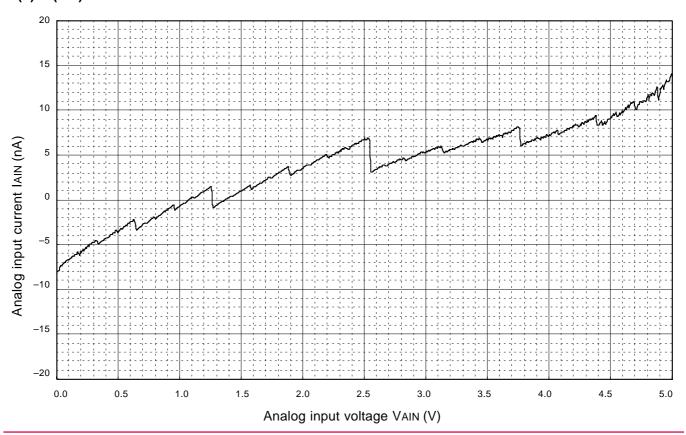


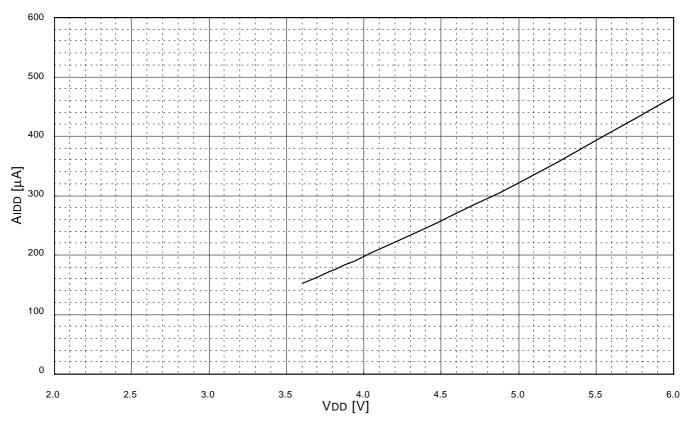
3.2.5 VDD-RPU characteristics (Ports P0-P2, D2/C, D3/K, RESET)



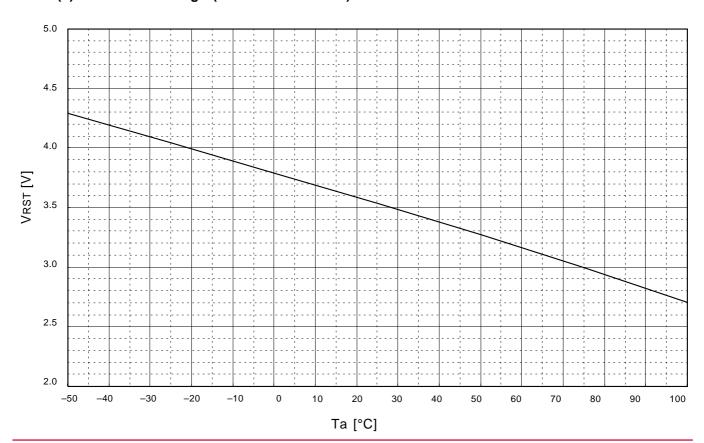

3.2.6 Analog input current characteristics pins Vain-lain (VDD = 5 V, high-speed mode, Ta = 25 °C)


(1) f(XIN) = 4 MHz

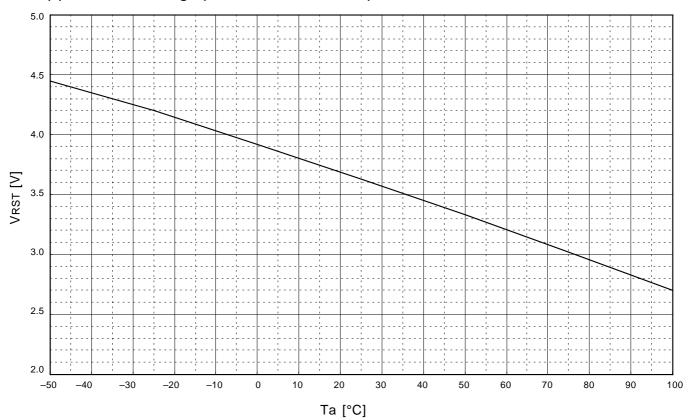

(2) f(XIN) = 2 MHz



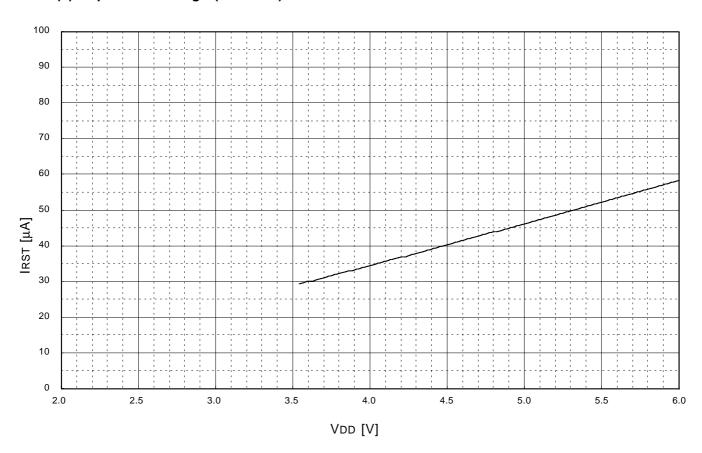
(4) f(XIN) = 400 kHz



3.2.7 A/D converter operation current (VDD-AlDD) characteristics (Ta = 25 °C)



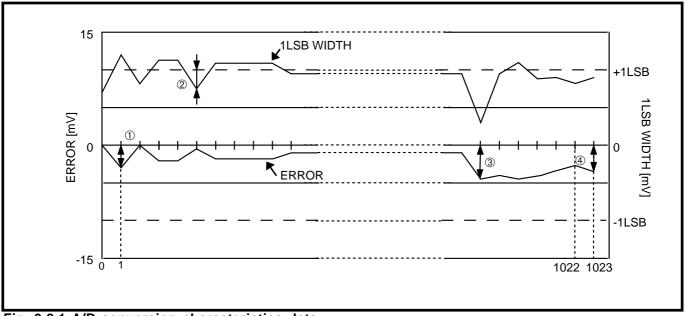
3.2.8 Voltage drop detection circuit characteristics

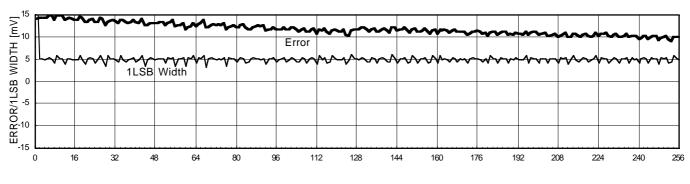

(1) Detection voltage (Mask ROM version)

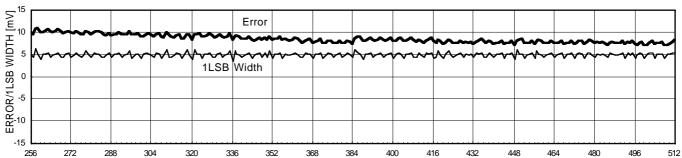
(2) Detection voltage (One Tim PROM version)

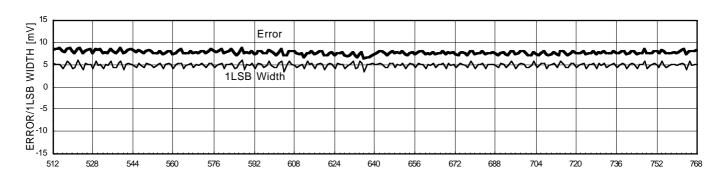
(3) Operation voltage (VDD-IRST) characteristics Ta = 25 °C

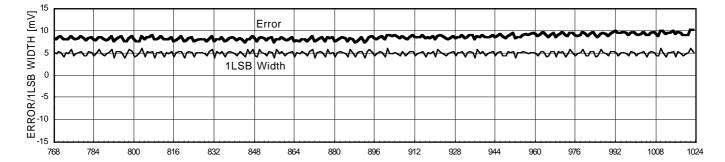
3.2.9 A/D converter typical characteristics




Fig. 3.2.1 A/D conversion characteristics data


Figure 3.2.1 shows the A/D accuracy measurement data.


(1) Non-linearity error	This means a deviation from the ideal characteristics between V0 to V1022 of actual A/D conversion characteristics. In Figure 3.2.1, it is $(\P-\P)/1LSB$.
(2) Differencial non-linearity error	This means a deviation from the ideal characteristics between the input voltages V ₀ to V ₁₀₂₂ necessary to change the output data to "1." In Figure 3.2.1, this is @/1LSB.
(3) Zero transition error	This means a deviation from the ideal characteristics between the input voltages 0 to VDD when the output data changes from "0" to "1." In Figure 3.2.1, this is the value of ①.
(4) Full-scale transition error	This means a deviation from the ideal characteristics between the input voltages 0 to VDD when the output data changes from "1022" to "1023." In Figure 3.2.1, this is the value of ④.
(5) Absolute accuracy	


For the A/D converter characteristics, refer to the section 3.1 Electrical characteristics.

(1) VDD = 5.12 V, XIN = 4 MHz (high-speed mode), Ta = 25 °C

3.3 List of precautions

3.3.1 Program counter

Make sure that the PCH does not specify after the last page of the built-in ROM.

3.3.2 Stack registers (SKs)

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together.

3.3.3 Notes on I/O port

(1) Note when an I/O port is used as an input port

Set the output latch to "1" and input the port value before input. If the output latch is set to "0," "L" level can be input.

(2) Noise and latch-up prevention

Connect an approximate 0.1 μ F bypass capacitor directly to the V_{SS} line and the V_{DD} line with the thickest possible wire at the shortest distance, and equalize its wiring in width and length.

The CNVss pin is also used as the V_{PP} pin (programming voltage = 12.5 V) at the One Time PROM version.

Connect the CNVss/VPP pin to Vss through an approximate 5 k Ω resistor which is connected to the CNVss/VPP pin at the shortest distance.

(3) Note on multifunction

- The input/output of D₂, D₃, P1₂ and P1₃ can be used even when C, K, CNTR (input) and INT are selected.
- The input of P12 can be used even when CNTR (output) is selected.
- The input/output of P20, P21, P30 and P31 can be used even when Ain0, Ain1, Ain2 and Ain3 are selected.

(4) Connection of unused pins

Table 3.3.1 shows the connections of unused pins.

(5) SD, RD instructions

When the SD and RD instructions are used, do not set "01102" or more to register Y.

(6) Analog input pins

When both analog input A_{IN0}–A_{IN3} and I/O ports P2 and P3 function are used, note the following;

Selection of analog input pins

Even when P2₀/A_{IN0}, P2₁/A_{IN1}, P3₀/A_{IN2}, P3₁/A_{IN3} are set to pins for analog input, they continue to function as ports P2 and P3 input/output. Accordingly, when any of them are used as I/O port and others are used as analog input pins, make sure to set the outputs of pins that are set for analog input to "1."

Also, the port input function of the pin functions as an analog input is undefined.

(7) Notes on port P1₃/INT pin

When the bit 3 of register I1 is cleared, the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.

• When the key-on wakeup function of port P1₃ is not used (register K1₃ = "0"), clear bits 2 and 3 of register I1 before system enters to the RAM back-up mode.

Table 3.3.1 Connections of unused pins

Pin	Connections of unused pins Connection	Usage condition				
XIN	Connect to Vss.	System operates by the on-chip oscillator. (Note 1)				
Хоит	Open.	System operates by the external clock.				
		(The ceramic resonator is selected with the CMCK instruction.)				
		System operates by the RC oscillator.				
		(The RC oscillation is selected with the CRCK instruction.)				
		System operates by the on-chip oscillator. (Note 1)				
D ₀ , D ₁	Open. (Output latch is set to "1.")	1 1 1				
D4, D5	Open. (Output latch is set to "0.")					
	Connect to Vss.					
D ₂ /C	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)				
D ₃ /K	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not				
		selected. (Notes 2, 3)				
	Connect to Vss.	The pull-up function and the key-on wakeup function are n				
		selected. (Notes 2, 3)				
P0 ₀ –P0 ₃	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)				
	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not				
		selected. (Notes 2, 3)				
	Connect to Vss.	The pull-up function and the key-on wakeup function are not				
		selected. (Notes 2, 3)				
P10, P11	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. (Note 4)				
P1 ₂ /CNTR	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not				
		selected. (Notes 2, 3)				
	Connect to Vss.	The pull-up function and the key-on wakeup function are not				
		selected. (Notes 2, 3)				
P13/INT	Open. (Output latch is set to "1.")	The key-on wakeup function is not selected. The input to INT				
		pin is disabled. (Notes 4, 5)				
	Open. (Output latch is set to "0.")	The pull-up function and the key-on wakeup function are not				
		selected. (Notes 2, 3)				
Connect to Vss.		The pull-up function and the key-on wakeup function are not				
		selected. (Notes 2, 3)				
P20/AIN0		The key-on wakeup function is not selected. (Note 4)				
P21/AIN1	Open. (Output latch is set to "0.")					
		selected. (Notes 2, 3)				
Connect to Vss.		The pull-up function and the key-on wakeup function are not				
		selected. (Notes 2, 3)				
P3 ₀ /A _{IN2}	Open. (Output latch is set to "1.")					
P3 ₁ /A _{IN3}	Open. (Output latch is set to "0.")					
	Connect to Vss.					

Notes 1: When the ceramic resonator or the RC oscillation is not selected by program, system operates by the on-chip oscillator (internal oscillator).

- 2: When the pull-up function is left valid, the supply current is increased. Do not select the pull-up function.
- 3: When the key-on wakeup function is left valid, the system returns from the RAM back-up state immediately after going into the RAM back-up state.

 Do not select the key-on wakeup function.
- 4: When selecting the key-on wakeup function, select also the pull-up function.
- 5: Clear the bit 3 (I1₃) of register I1 to "0" to disable to input to INT pin (after reset: I1₃ = "0")

(Note when connecting to Vss)

• Connect the unused pins to Vss using the thickest wire at the shortest distance against noise.

3.3.4 Notes on interrupt

(1) Setting of INT interrupt valid waveform

Set a value to the bit 2 of register I1, and execute the **SNZ0** instruction to clear the EXF0 flag to "0" after executing at least one instruction.

Depending on the input state of P1₃/INT pin, the external interrupt request flag (EXF0) may be set to "1" when the interrupt valid waveform is changed.

(2) Setting of INT pin input control

Set a value to the bit 3 of register I1, and execute the **SNZ0** instruction to clear the EXF0 flag to "0" after executing at least one instruction.

Depending on the input state of P1₃/INT pin, the external interrupt request flag (EXF0) may be set to "1" when the interrupt valid waveform is changed.

(3) Multiple interrupts

Multiple interrupts cannot be used in the 4502 Group.

(4) Notes on interrupt processing

When the interrupt occurs, at the same time, the interrupt enable flag INTE is cleared to "0" (interrupt disable state). In order to enable the interrupt at the same time when system returns from the interrupt, write **EI** and **RTI** instructions continuously.

(5) P1₃/INT pin

Note [1] on bit 3 of register I1

When the input of the INT pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.

• Depending on the input state of the P1₃/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 3.3.1 ①) and then, change the bit 3 of register I1.

In addition, execute the **SNZ0** instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 3.3.1 ②).

Also, set the **NOP** instruction for the case when a skip is performed with the **SNZ0** instruction (refer to Figure 3.3.1 ③).

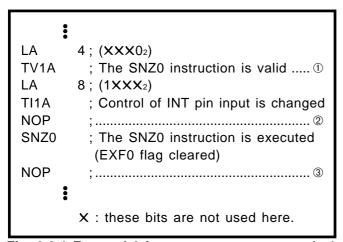


Fig. 3.3.1 External 0 interrupt program example-1

Note [2] on bit 3 of register I1

When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.

• When the key-on wakeup function of port P1₃ is not used (register K1₃ = "0"), clear bits 2 and 3 of register I1 before system enters to the RAM back-up mode. (refer to Figure 3.3.2 ①).

```
LA 0; (00XX<sub>2</sub>)
TI1A; Input of INT disabled ......①
DI
EPOF
POF; RAM back-up

X: these bits are not used here.
```

Fig. 3.3.2 External 0 interrupt program example-2

Note [3] on bit 2 of register I1

When the interrupt valid waveform of the P1₃/INT pin is changed with the bit 2 of register I1 in software, be careful about the following notes.

• Depending on the input state of the P1₃/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 3.3.3 ①) and then, change the bit 2 of register I1.

In addition, execute the **SNZ0** instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 3.3.3 ②).

Also, set the **NOP** instruction for the case when a skip is performed with the **SNZ0** instruction (refer to Figure 3.3.3 ③).

```
:
LA
         ; (XXX0<sub>2</sub>)
TV1A
         ; The SNZ0 instruction is valid ..... ①
     12 ; (X1XX<sub>2</sub>)
LA
TI1A
         ; Interrupt valid waveform is changed
NOP
         ..... ②
SNZ0
         ; The SNZ0 instruction is executed
         (EXF0 flag cleared)
NOP
         ...... ③
        X: these bits are not used here.
```

Fig. 3.3.3 External 0 interrupt program example-3

(6) Power down instruction

Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction.

3.3.5 Notes on timer

(1) Prescaler

Stop the prescaler operation to change its frequency dividing ratio.

(2) Count source

Stop timer 1 or 2 counting to change its count source.

(3) Reading the count values

Stop timer 1 or 2 counting and then execute the TAB1 or TAB2 instruction to read its data.

(4) Writing to the timer

Stop timer 1 or 2 counting and then execute the T1AB or T2AB instruction to write its data.

(5) Writing to reload register R1

When writing data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflow.

(6) Timer 1 and timer 2 count start timing and count time when operation starts

Count starts from the first rising edge of the count source (2) after timer 1 and timer 2 operations start (1). Time to first underflow (3) is shorter (for up to 1 period of the count source) than time among next underflow (4) by the timing to start the timer and count source operations after count starts. When selecting CNTR input as the count source of timer 2, timer 2 operates synchronizing with the falling edge of CNTR input.



Fig. 3.3.4 Timer count start timing and count time when operation starts (T1, T2)

(7) Watchdog timer

- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, execute the **DWDT** instruction and the **WRST** instruction continuously, and clear the WEF flag to "0" to stop the watchdog timer function.
- The watchdog timer function is valid after system is returned from the RAM back-up. When not
 using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the RAM back-up, and stop the watchdog timer function.

(8) Pulse width input to CNTR pin

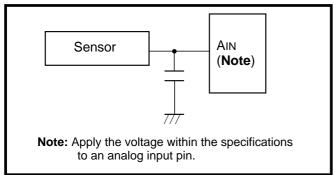
Table 3.3.2 shows the recommended operating condition of pulse width input to CNTR pin.

Table 3.3.2 Recommended operating condition of pulse width input to CNTR pin

Parameter	Condition	Rating value			Unit	
		Min.	Тур.	Max.	Offic	
Timer external input period	High-speed mode	3/f(X _{IN})			S	
("H" and "L" pulse width)	Middle-speed mode	6/f(X _{IN})				
	Low-speed mode	12/f(X _{IN})				
	Default mode	24/f(X _{IN})				

3.3.6 Notes on A/D conversion

(1) Note when the A/D conversion starts again


When the A/D conversion starts again with the **ADST** instruction during A/D conversion, the previous input data is invalidated and the A/D conversion starts again.

(2) A/D converter-1

Each analog input pin is equipped with a capacitor which is used to compare the analog voltage. Accordingly, when the analog voltage is input from the circuit with high-impedance and, charge/discharge noise is generated and the sufficient A/D accuracy may not be obtained. Therefore, reduce the impedance or, connect a capacitor (0.01 μ F to 1 μ F) to analog input pins.

Figure 3.3.5 shows the analog input external circuit example-1.

When the overvoltage applied to the A/D conversion circuit may occur, connect an external circuit in order to keep the voltage within the rated range as shown the Figure 3.3.6. In addition, test the application products sufficiently.

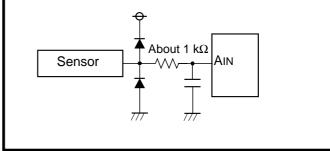


Fig. 3.3.6 Analog input external circuit example-2

Fig. 3.3.5 Analog input external circuit example-1

(3) Notes for the use of A/D conversion 2

When the operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode with bit 3 of register Q1 in a program, be careful about the following notes.

- Clear bit 2 of register V2 to "0" to change the operating mode of the A/D converter from the comparator mode to the A/D conversion mode with bit 3 of register Q1 (refer to Figure 3.3.7①).
- The A/D conversion completion flag (ADF) may be set when the operating mode of the A/D converter is changed from the comparator mode to the A/D conversion mode. Accordingly, set a value to bit 3 of register Q1, and execute the **SNZAD** instruction to clear the ADF flag.

Do not change the operating mode (both A/D conversion mode and comparator mode) of A/D converter with bit 3 of register Q1 during operating the A/D converter.

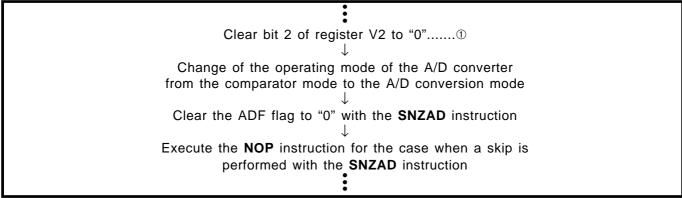


Fig. 3.3.7 A/D converter operating mode program example

(4) A/D converter is used at the comparator mode

The analog input voltage is higher than the comparison voltage as a result of comparison, the contents of ADF flag retains "0," not set to "1."

In this case, the A/D interrupt does not occur even when the usage of the A/D interrupt is enabled. Accordingly, consider the time until the comparator operation is completed, and examine the state of ADF flag by software. The comparator operation is completed after 8 machine cycles.

(5) Analog input pins

Even when P20/AIN0, P21/AIN1, P30/AIN2 and P31/AIN3 are set to pins for analog input, they continue to function as P2 and P3 I/O. Accordingly, when any of them are used as these ports and others are used as analog input pins, make sure to set the outputs of pins that are set for analog input to "1." Also, the port input function of the pin functions as an analog input is undefined.

(6) TALA instruction

When the **TALA** instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, and simultaneously, the low-order 2 bits of register A is "0."

(7) Recommended operating conditions when using A/D converter

The recommended operating conditions of supply voltage and system clock frequency when using A/D converter are different from those when not using A/D converter.

Table 3.3.3 shows the recommended operating conditions when using A/D converter.

Table 3.3.3 Recommended operating conditions (when using A/D converter)

Parameter	Condition		Limits		
raiametei	Condition			Max.	Unit
System clock frequency	VDD = VRST to 5.5 V (high-speed mode)	0.1		4.4	
(at ceramic resonance or	VDD = VRST to 5.5 V (middle-speed mode)	0.1		2.2	
RC oscillation) (Note 2)	VDD = VRST to 5.5 V (low-speed mode)	0.1		1.1	
	VDD = VRST to 5.5 V (default mode)	0.1		0.5	MHz
System clock frequency	VDD = VRST to 5.5 V (high-speed mode)	0.1		3.2	1011 12
(ceramic resonance	VDD = VRST to 5.5 V (middle-speed mode) Duty	0.1		1.6	
selected, at external	VDD = VRST to 5.5 V (low-speed mode) 40 % to 60 9	6 0.1		0.8	
clock input)	VDD = VRST to 5.5 V (default mode)	0.1		0.4	

Notes 1: VRST: Detection voltage of voltage drop detection circuit.

3.3.7 Notes on reset

(1) Register initial value

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

(2) Power-on reset

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V to 2.0 V must be set to 100 μ s or less. If the rising time exceeds 100 μ s, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

^{2:} The frequency at RC oscillation is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

3.3.8 Notes on RAM back-up

(1) Key-on wakeup function

After setting ports (P0, P1, D₂/C, D₃/K, P2₀/A_{IN0} and P2₁/A_{IN1} specified with register K0–K2) which keyon wakeup function is valid to "H," execute the **POF** or **POF2** instruction.

If one of ports which key-on wakeup function is valid is in the "L" level state, system returns from the RAM back-up after the **POF** or **POF2** instruction is executed.

(2) POF instruction, POF2 instruction

Execute the **POF** or **POF2** instruction immediately after executing the **EPOF** instruction to enter the RAM back-up state.

Note that system cannot enter the RAM back-up state when executing only the **POF** or **POF2** instruction.

Be sure to disable interrupts by executing the **DI** instruction before executing the **EPOF** instruction and the **POF** or **POF2** instruction.

(3) Return from RAM back-up

After system returns from RAM back-up, set the undefined registers and flags.

The initial value of the following registers are undefined at RAM back-up. After system is returned from RAM back-up, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)

(4) Watchdog timer

The watchdog timer function is valid after system is returned from the RAM back-up. When not using the watchdog timer function, execute the **DWDT** instruction and the **WRST** instruction continuously every system is returned from the RAM back-up, and stop the watchdog timer function.

(5) P1₃/INT pin

When the bit 3 of register I1 is cleared, the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.

• When the key-on wakeup function of port P1₃ is not used (register K1₃ = "0"), clear bits 2 and 3 of register I1 before system enters to the RAM back-up mode.

(6) External clock

When the external signal clock is used as the source oscillation $(f(X_{IN}))$, note that the RAM back-up mode (**POF** and **POF2** instructions) cannot be used.

3.3.9 Notes on oscillation control

(1) Clock control

Execute the **CMCK** or the **CRCK** instruction in the initial setting routine of program (executing it in addres 0 in page 0 is recommended).

The oscillation circuit by the **CMCK** or **CRCK** instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these two instructions is valid. Other oscillation circuits and the on-chip oscillator stop.

(2) On-chip oscillator

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

Also, the oscillation stabilize wait time after system is released from reset is generated by the onchip oscillator clock. When considering the oscillation stabilize wait time after system is released from reset, be careful that the variable frequency of the on-chip oscillator clock.

(3) External clock

When the external signal clock is used as the source oscillation $(f(X_{IN}))$, note that the RAM back-up mode (**POF** and **POF2** instructions) cannot be used.

(4) Value of a part connected to an oscillator

Values of a capacitor and a resistor of the oscillation circuit depend on the connected oscillator and the board. Accordingly, consult the oscillator manufacturer for values of each part connected the oscillator.

3.3.10 Electric Characteristic Differences Between Mask ROM and One Time PROM Version MCU

There are differences in electric characteristics, operation margin, noise immunity, and noise radiation between Mask ROM and One Time PROM version MCUs due to the difference in the manufacturing processes.

When manufacturing an application system with the One time PROM version and then switching to use of the Mask ROM version, please perform sufficient evaluations for the commercial samples of the Mask ROM version.

3.3.11 Note on Power Source Voltage

When the power source voltage value of a microcomputer is less than the value which is indicated as the recommended operating conditions, the microcomputer does not operate normally and may perform unstable operation.

In a system where the power source voltage drops slowly when the power source voltage drops or the power supply is turned off, reset a microcomputer when the supply voltage is less than the recommended operating conditions and design a system not to cause errors to the system by this unstable operation.

3-35

3.4 Notes on noise

Countermeasures against noise are described below. The following countermeasures are effective against noise in theory, however, it is necessary not only to take measures as follows but to evaluate before actual use.

3.4.1 Shortest wiring length

The wiring on a printed circuit board can function as an antenna which feeds noise into the microcomputer.

The shorter the total wiring length (by mm unit), the less the possibility of noise insertion into a microcomputer.

(1) Package

Select the smallest possible package to make the total wiring length short.

Reason

The wiring length depends on a microcomputer package. Use of a small package, for example QFP and not DIP, makes the total wiring length short to reduce influence of noise.

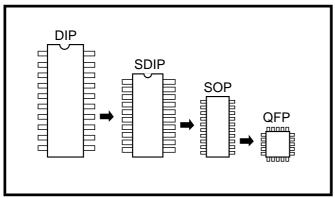


Fig. 3.4.1 Selection of packages

(2) Wiring for RESET input pin

Make the length of wiring which is connected to the $\overline{\text{RESET}}$ input pin as short as possible. Especially, connect a capacitor across the $\overline{\text{RESET}}$ input pin and the Vss pin with the shortest possible wiring.

Reason

In order to reset a microcomputer correctly, 1 machine cycle or more of the width of a pulse input into the RESET pin is required. If noise having a shorter pulse width than this is input to the RESET input pin, the reset is released before the internal state of the microcomputer is completely initialized. This may cause a program runaway.

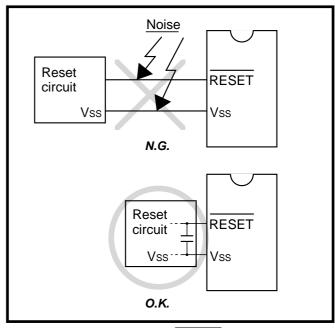


Fig. 3.4.2 Wiring for the RESET input pin

(3) Wiring for clock input/output pins

- Make the length of wiring which is connected to clock I/O pins as short as possible.
- Make the length of wiring across the grounding lead of a capacitor which is connected to an oscillator and the Vss pin of a microcomputer as short as possible.
- Separate the Vss pattern only for oscillation from other Vss patterns.

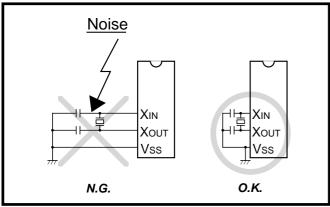


Fig. 3.4.3 Wiring for clock I/O pins

Reason

If noise enters clock I/O pins, clock waveforms may be deformed. This may cause a program failure or program runaway. Also, if a potential difference is caused by the noise between the Vss level of a microcomputer and the Vss level of an oscillator, the correct clock will not be input in the microcomputer.

(4) Wiring to CNVss pin

Connect the CNVss pin to the Vss pin with the shortest possible wiring.

Reason

The operation mode of a microcomputer is influenced by a potential at the CNVss pin. If a potential difference is caused by the noise between pins CNVss and Vss, the operation mode may become unstable. This may cause a microcomputer malfunction or a program runaway.

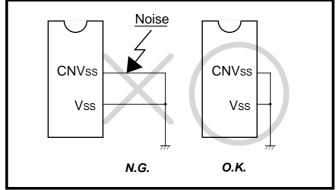


Fig. 3.4.4 Wiring for CNVss pin

(5) Wiring to VPP pin of built-in PROM version In the built-in PROM version of the 4502 Group, the CNVss pin is also used as the built-in PROM power supply input pin VPP.

When the VPP pin is also used as the CNVss pin

Connect an approximately 5 k Ω resistor to the VPP pin the shortest possible in series and also to the Vss pin. When not connecting the resistor, make the length of wiring between the VPP pin and the Vss pin the shortest possible (refer to **Figure 3.4.5**)

Note: Even when a circuit which included an approximately 5 $k\Omega$ resistor is used in the Mask ROM version, the microcomputer operates correctly.

Reason

The VPP pin of the built-in PROM version is the power source input pin for the built-in PROM. When programming in the built-in PROM, the impedance of the VPP pin is low to allow the electric current for writing flow into the PROM. Because of this, noise can enter easily. If noise enters the VPP pin, abnormal instruction codes or data are read from the built-in PROM, which may cause a program runaway.

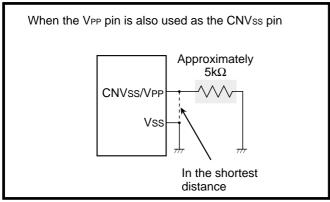


Fig. 3.4.5 Wiring for the VPP pin of the built-in PROM version

3.4.2 Connection of bypass capacitor across Vss line and VDD line

Connect an approximately 0.1 μ F bypass capacitor across the Vss line and the VDD line as follows:

- Connect a bypass capacitor across the Vss pin and the VDD pin at equal length.
- Connect a bypass capacitor across the Vss pin and the VDD pin with the shortest possible wiring.
- Use lines with a larger diameter than other signal lines for Vss line and VDD line.
- Connect the power source wiring via a bypass capacitor to the Vss pin and the VDD pin.

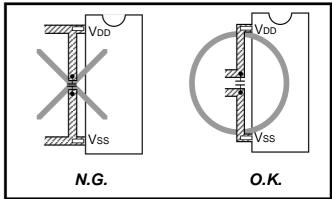


Fig. 3.4.6 Bypass capacitor across the Vss line and the VDD line

3.4.3 Wiring to analog input pins

- Connect an approximately 100 Ω to 1 k Ω resistor to an analog signal line which is connected to an analog input pin in series. Besides, connect the resistor to the microcomputer as close as possible.
- Connect an approximately 1000 pF capacitor across the Vss pin and the analog input pin. Besides, connect the capacitor to the Vss pin as close as possible. Also, connect the capacitor across the analog input pin and the Vss pin at equal length.

Reason

Signals which is input in an analog input pin (such as an A/D converter/comparator input pin) are usually output signals from sensor. The sensor which detects a change of event is installed far from the printed circuit board with a microcomputer, the wiring to an analog input pin is longer necessarily. This long wiring functions as an antenna which feeds noise into the microcomputer, which causes noise to an analog input pin.

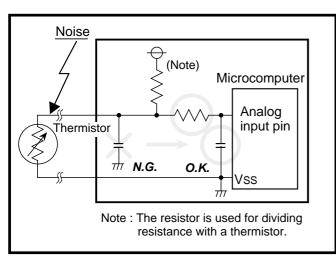


Fig. 3.4.7 Analog signal line and a resistor and a capacitor

3.4.4 Oscillator concerns

Take care to prevent an oscillator that generates clocks for a microcomputer operation from being affected by other signals.

(1) Keeping oscillator away from large current signal lines

Install a microcomputer (and especially an oscillator) as far as possible from signal lines where a current larger than the tolerance of current value flows.

Reason

In the system using a microcomputer, there are signal lines for controlling motors, LEDs, and thermal heads or others. When a large current flows through those signal lines, strong noise occurs because of mutual inductance.

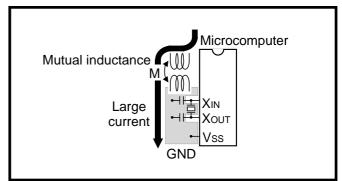


Fig. 3.4.8 Wiring for a large current signal line

(2) Installing oscillator away from signal lines where potential levels change frequently Install an oscillator and a connecting pattern of an oscillator away from signal lines where potential levels change frequently. Also, do not cross such signal lines over the clock lines or the signal lines which are sensitive to noise.

Reason

Signal lines where potential levels change frequently (such as the CNTR pin signal line) may affect other lines at signal rising edge or falling edge. If such lines cross over a clock line, clock waveforms may be deformed, which causes a microcomputer failure or a program runaway.

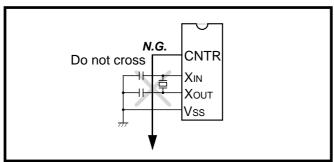


Fig. 3.4.9 Wiring to a signal line where potential levels change frequently

(3) Oscillator protection using Vss pattern

As for a two-sided printed circuit board, print a Vss pattern on the underside (soldering side) of the position (on the component side) where an oscillator is mounted.

Connect the Vss pattern to the microcomputer Vss pin with the shortest possible wiring. Besides, separate this Vss pattern from other Vss patterns.

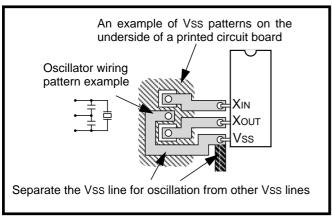


Fig. 3.4.10 Vss pattern on the underside of an oscillator

3.4.5 Setup for I/O ports

Setup I/O ports using hardware and software as follows:

<Hardware>

• Connect a resistor of 100 Ω or more to an I/O port in series.

<Software>

- As for an input port, read data several times by a program for checking whether input levels are equal or not.
- As for an output port or an I/O port, since the output data may reverse because of noise, rewrite data to its output latch at fixed periods.
- Rewrite data to pull-up control registers at fixed periods.

3.4.6 Providing of watchdog timer function by software

If a microcomputer runs away because of noise or others, it can be detected by a software watchdog timer and the microcomputer can be reset to normal operation. This is equal to or more effective than program runaway detection by a hardware watchdog timer. The following shows an example of a watchdog timer provided by software.

In the following example, to reset a microcomputer to normal operation, the main routine detects errors of the interrupt processing routine and the interrupt processing routine detects errors of the main routine. This example assumes that interrupt processing is repeated multiple times in a single main routine processing.

- <The main routine>
- Assigns a single word of RAM to a software watchdog timer (SWDT) and writes the initial value N in the SWDT once at each execution of the main routine. The initial value N should satisfy the following condition:

 $N+1 \ge {\text{(Counts of interrupt processing executed in } \atop {\text{each main routine)}}}$

As the main routine execution cycle may change because of an interrupt processing or others, the initial value N should have a margin.

- Watches the operation of the interrupt processing routine by comparing the SWDT contents with counts of interrupt processing after the initial value N has been set.
- Detects that the interrupt processing routine has failed and determines to branch to the program initialization routine for recovery processing in the following case:

If the SWDT contents do not change after interrupt processing.

- <The interrupt processing routine>
- Decrements the SWDT contents by 1 at each interrupt processing.
- Determines that the main routine operates normally when the SWDT contents are reset to the initial value N at almost fixed cycles (at the fixed interrupt processing count).
- Detects that the main routine has failed and determines to branch to the program initialization routine for recovery processing in the following case:

If the SWDT contents are not initialized to the initial value N but continued to decrement and if they reach 0 or less.

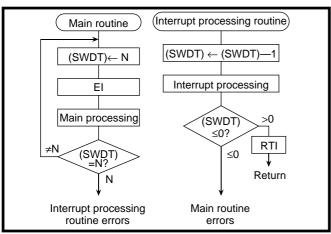
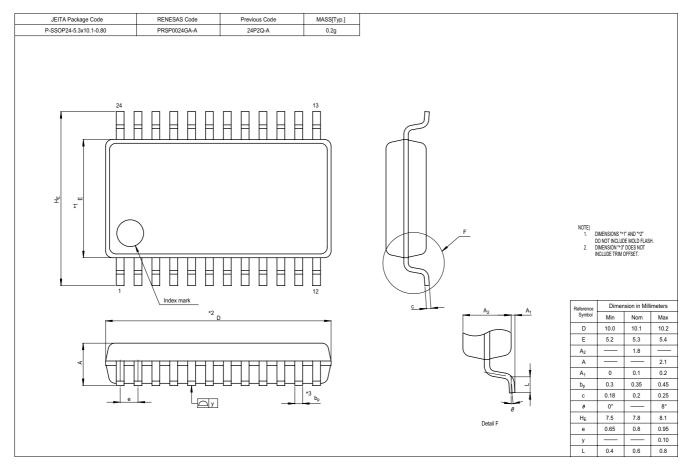
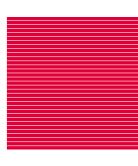



Fig. 3.4.11 Watchdog timer by software

3.5 Package outline

RENESAS 4-BIT CISC SINGLE-CHIP MICROCOMPUTER USER'S MANUAL 4502 Group


Publication Data: Rev.1.00 Oct 09, 2002

Rev.2.01 Feb 02, 2005

Published by: Sales Strategic Planning Div.

Renesas Technology Corp.

4502 Group User's Manual

